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Abstract

When pharmaceutical interventions are unavailable to deal with an epidemic outbreak, ade-

quate management of communication strategies can be key to reduce the contagion risks.

On the one hand, accessibility to trustworthy and timely information, whilst on the other, the

adoption of preventive behaviors may be both crucial. However, despite the abundance of

communication strategies, their effectiveness has been scarcely evaluated or merely cir-

cumscribed to the scrutiny of public affairs. To study the influence of communication strate-

gies on the spreading dynamics of an infectious disease, we implemented a susceptible-

exposed-infected-removed-dead (SEIRD) epidemiological model, using an agent-based

approach. Agents in our systems can obtain information modulating their behavior from two

sources: (i) through the local interaction with other neighboring agents and, (ii) from a central

entity delivering information with a certain periodicity. In doing so, we highlight how global

information delivered from a central entity can reduce the impact of an infectious disease

and how informing even a small fraction of the population has a remarkable impact, when

compared to not informing the population at all. Moreover, having a scheme of delivering

daily messages makes a stark difference on the reduction of cases, compared to the other

evaluated strategies, denoting that daily delivery of information produces the largest

decrease in the number of cases. Furthermore, when the information spreading relies only

on local interactions between agents, and no central entity takes actions along the dynam-

ics, then the epidemic spreading is virtually independent of the initial amount of informed

agents. On top of that, we found that local communication plays an important role in an inter-

mediate regime where information coming from a central entity is scarce. As a whole, our

results highlight the importance of proper communication strategies, both accurate and

daily, to tackle epidemic outbreaks.
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Introduction

The spread of infectious diseases is nowadays an important health issue worldwide, killing

about 8.5 million people yearly [1]. More recently, the broad and diverse impact of the

COVID-19 pandemic around the world has demonstrated that human behavior [2–4] and

communication [5–7] are both key components in the propagation, control [8, 9], and mitiga-

tion of epidemics [10], specially in the absence of pharmaceutical interventions. Despite this

certainty, the actual relationship between communication and human behavior still remains

unclear. For instance, questions such asWhich would be the reaction of a certain population
during the spread of an epidemic disease? seems to depend strongly on both sociological and

communication factors [11–13], among others, making the problem extremely complex to

tackle. Therefore, it appears to be essential to integrate socio-cultural factors along with epide-

miological models, in order to accurately describe the temporal evolution of an epidemic.

Previous contributions focused on how media [14–23] and information [24–27] affects the

spread of infectious diseases, (for detailed systematic reviews please refer to [28–30]). Main

conclusions from this research area are summarized as follow: (i) human response depends on

the specific disease being dispersed together with social, cultural, political, and economic fac-

tors characterizing the population in which the disease spread; (ii) appropriate data is required

to identify human behaviours that are key to regulate the spread of the disease; (iii) agent mod-

els are suitable tools to study the effect of behavioral changes on a population under an epi-

demic situation; and (iv), social media and massive data strategies should be both considered

at the moment of fitting and feeding models with real data [28]. Furthermore, an interesting

emerging concept is the existence of a “Behavioral Immune System” [31], describing how the

adoption of preventive behaviors could help people to reduce their probability of resulting

infected during an epidemic. Notably, while vaccine coverage to deal with the COVID-19 pan-

demic remains low, particularly for developing countries, the existence of an actual Behavioral

Immune System in the population is one of the best protective front lines we can rely on.

An interesting approach relating communication with the spreading of an infectious dis-

ease was proposed by Funk et al. in 2009 [32], by introducing the concept of “awareness” as a

mathematical association between agents’s proximity and their susceptibility to the infection.

In doing so, the authors formulated a mathematical model describing how awareness spreads

in population, coupled to an SEIR epidemiological model. Funk’s model assumes that: (i)

awareness is a positive-definite function of time and depends on how information’s quality is

distributed among susceptible individuals at a given time; (ii) information’s quality decays in

time unless agents get exposed to new sources of information of higher quality and also decays

when it is transferred from one person to another; (iii) information sources can be of local or

global nature, and they can conduce to a variety of different preventive measures adopted by

agents. However, the epidemiological consequence in the system is the same in all cases: a

reduction in the infection rate, independent from any information strategy. Using this scheme,

the authors argued that self-initiated reactions made by individuals under the influence of a

certain degree of awareness can be crucial to the epidemic fate. Interestingly, they observe that

a disease can be completely stopped from spreading, only if the population awareness diminish

the basic reproductive number of disease, R0, below a certain threshold.

In this work, we push forward these ideas to investigate how different communication strat-

egies, extending from local to global ones, may produce a quantifiable effect in the outcome of

the spreading of an infectious disease. Throughout an exhaustive numerical analysis, we com-

pare populations having different characteristics when adopting preventive measures based on

the situational awareness. To do so, we relied on an agent-based model (ABM) framework in

which the infection propagates through a host population, from agent to agent, following a
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probabilistic process that depends on both the agents’ proximity and their situational aware-

ness about the disease. Furthermore, agents can acquired information along time either from

an agent-to-agent interaction or from a central entity, reducing temporally their disease sus-

ceptibility, following the same logic as in the model proposed by Funk et al.

Our results suggest that informing a small fraction of the population has a remarkable

impact on the spread of the disease, compared to a situation where the population is not

informed at all. Moreover, communication strategies relying on a daily basis largely outper-

form the delivery of promptly information, delivered as soon as the disease spreads. Of note,

our models also suggest that the initial number of informed agents is irrelevant to the outcome

of an epidemic when information is not replenished over time. On top of that, communication

between agents plays a crucial role, for some societies, when information is scarcely replen-

ished, becoming irrelevant when large amount of information is available on a periodic basis,

from a central entity.

Materials and methods

This section is divided in two parts. First, we introduce and contextualize our model, without

mathematical nor computational technicalities, instead we provide a discussion focused on the

learning that the 2014–2016 Ebola outbreak in West Africa, left us. This discussion is carried

out with special emphasis in the interplay between the propagation of a disease and communi-

cation factors in a society. Then, we go through the details of our model, discussing its applica-

bility and limitations.

An SEIRD epidemiological model with communication

Among all possible infectious diseases, we decided to use the Ebola virus disease (EVD) in this

study for several reasons. Even though we are in the middle of a COVID-19 pandemic, and

considering the worldwide context it would have made more sense to work in those lines, our

understanding about EVD is fare more mature than that of COVID-19. Moreover, a vast liter-

ature regarding the dynamics of EVD has been published since 2014 [33–40], arriving to a cer-

tain degree of consensus about fundamental characteristics of this disease such as its

spreading, lethality and mortality, basic and time-dependant reproductive numbers, R0 and Rt,
respectively, having an R0 for Ebola virus within the interval 1.51–2.53 [33, 37, 40]. The latter

is extremely relevant for us, as our intention is to explore cases where, due to the action of

exchanging information, the result is a feasible reduction of the disease’s negative impact in

the population. In other words, this can be interpreted as the possibility of modulating Rt by

means of a strategy of information delivery, reaching a Rt< 1 at some point along the

simulation.

Furthermore, the extreme symptoms of EVD and the sociological impact of its outbreaks

can lead to undesired social behaviors from both authorities and the population such as fear,

discrimination, overreaction in the implementation of public policies, and the rejection of sci-

entific evidence. Examples of these anomalous behaviors are extensively discussed in [34, 41–

44], showing why considering human behavior, and not only epidemiological factors, is essen-

tial to understand the dynamics of the spreading of infectious diseases. Of note, previous EVD

outbreaks were successfully controlled by implementing public policies that helped to prevent

contagion [45–49]. Thankfully, the situation can potentially change now, as there are two EVD

vaccines that were approved between 2019 and 2020 for the Zaire strain: rVSV-ZEBOV

approved by the FDA [50, 51] and ZEBOV/MVA-BN-Filo which was approved by the Euro-

pean Union [52, 53]. However, considering the case of the current COVID-19 pandemic, and

moreover future epidemics, producing models to study how non-pharmaceutical
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interventions based on communication strategies may impact on the spreading of infectious

diseases, is crucial.

When it comes to modelling the dynamics of an epidemic, the compartmental models, first

proposed by Kermack and McKendrick in 1927 [54], have shown their success and flexibility.

Under this scheme, individuals are assigned to specific compartments depending on their cur-

rent epidemiological state, and they can transit from one compartment to another along time,

depending on the specific disease and dynamics. Common compartments are Susceptible (S),

Infected (I), and Removed (R), among others. Using these elements as building blocks we may

assemble a variety of epidemiological models such as the SIS (susceptible-infected-susceptible)

or the SIR (susceptible-infected-removed) models. The former has been used to describe dis-

eases such as the common cold or influenza [55, 56], whilst the latter to describe, for instance,

measles [57, 58]. When modeling the EVD dynamics, the SEIRD model has shown to have

good agreement with real data [36, 40]. Here, the E and D compartments stand for Exposed
and Dead, respectively. Including these compartments explicitly defines an incubation period

—i.e. defined as exposed state E—and, unlike other diseases, that susceptible individuals can

still get infected with EVD through the contact with dead individuals, if no proper precautions

are taken into consideration. Notably, despite controversy, this seems to be also the case of the

COVID-19 pandemic [59–62].

Finally, to implement a model in which we may study the influence of communication

strategies on the spread of EVD, we followed the approach proposed by Funk et al. [32],

assuming that only trustworthy information is present in the system. Despite that the existence

and importance of unreliable information, particularly in the form of fake-news, has been

widely discussed [63, 64], we decided to focus only in reliable information as a first approach.

Thus, the influence of fake-news during the spread of epidemic diseases, will be explored else-

where. As a consequence, considering only truthful information implies that individuals hav-

ing information are less likely to get infected than that of the ones without information. In our

model, information can spread by three mechanisms: i) we consider that individuals can

acquire information from a central entity corresponding to a global source of information; ii)

through individual-individual interaction, which is a local source; and iii) when agents get

infected and hence, they become informed. Of note, under this approach, individuals can

affect each other not only from the epidemiological point of view –i.e. transmitting the dis-

ease–, but also because they disseminate information in the system. In the following section,

we extend these ideas into a more technical and mathematical description of our model and

simulations.

Details of our ABM

We implemented our model using an ABM scheme having 10,000 agents in Netlogo 6.1.1 [65].

Netlogo is a free software designed to run multi-agent simulations, with a large set of included

functionalities, having an extensive user community. It supports agent dynamics embedded in

space, which makes it ideal for simulations in epidemiology when the dependency for the

spreading dynamics on the spatial proximity between agents, is a desired characteristic

[66–68].

In our simulations, an agent is characterized by the parameters zi, Qi, and ri, where zi
denotes the agent’s position in space, Qi denotes its epidemiological state, and ri denotes its

information state. The suffix i denotes the ith agent. For simplicity, we assumed that each

agent moves in a 2-torus (a 2D space with periodic boundary conditions) following a 2-D ran-

dom walk (with unitary steps following random directions) and without affecting or being

affected by other agents, at least in terms of its spatial dynamics. In other words, they diffuse
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all over the space in such a way that the probability of finding any agent in any position of

space for a sufficiently long simulation time converges to a uniform distribution. It is worth

noting that, even though this is true theoretically speaking, in the limit of t!1, we are far

away from that limit given that we explore at most 1000 days of simulation time.

Agents were uniformly distributed in the 2-torus space at the start of the simulation. To

define proximity between agents, we have divided the 2-torus into 103 × 103 square patches of

length size equal to 1. This leads to a grid-like space in which both epidemiological interactions

and information exchange occur only between agents within the same patch. These interac-

tions happen at rates which are modulated by the spatial density of agents. Thus, the number

of total patches was selected to define a rate of interactions so to adjust our ABM to the results

of the SEIRD model based on ODEs proposed to explain the EVD dynamics by Weitz and

Dushoff [36]. For a deeper dive into the SEIRD model, see S1 Eq. The comparison between the

results of our ABM model against the ODE model is shown in S1 Fig.

The epidemiological dynamics of the simulation has two parts: an infection dynamics and a

transition dynamics. In general, agents can be in any of the five epidemiological states, i.e. Qi 2
{S, E, I, R, D}, however, depending on their particular state their dynamics will be of one type

or the other. It is worth noting that, S and S represent the susceptible epidemiological state and

the susceptible compartment, respectively. The same occurs for the other states and compart-

ments. Importantly, the infection dynamic occurs when a pair of agents susceptible-infected

or susceptible-dead is simultaneously found at the same patch. Then, following a probabilistic

process, guided by a Montecarlo algorithm, the susceptible agent may suffer a transition from

S to E, which we will denote from now and on by S! E, or it may remain in the S state. In

practice, when one susceptible agent or multiples susceptible agents encounter either an

infected or a death agent in the same patch at the same time, we resolve the Montecarlo step by

sampling a random number ν from a uniform distribution Uð0; 1Þ. Then, we compare ν with

βI,D (1 − ri)< 1 for each susceptible agent in the patch to resolve the infection: if ν< βI,D (1 −
ri), then the susceptible agent gets exposed. βI and βD are the infection rates for transitions S!
E due to the action of I and D, respectively, when there is absence of information in the system.

These parameters were extracted from reference [36] and they are specific for the 2014–2016

EVD outbreak (these are provided in S1 Table). Of note, the term βI,D (1 − ri) contains the

dependency of the information state ri. This is actually the modification to the infection rates

suggested by Funk el. al [32], and the one we adopt in this article, to couple the communication

dynamics to the infection dynamics. Furthermore, since the mean density of agents per patch

is approximately 0.94, then the interactions along the simulation are basically pair-wise, this

will be also true for the communication dynamics between agents.

On the other hand, the transition dynamic occurs when agents are in any of the epidemio-

logical states but susceptible. In those cases the transitions are E! I, I! R, I! D, and D!
;. The former and the latter occur in a totally deterministic fashion, after TE and TD days

respectively. However, I! R and I! D occur both after TI days but at rate 1 − f and f, respec-

tively. The empty state is represented by ;, and D!; symbolizes that the agents are being

removed from the simulation, which in most of the cases, accounts for a person being buried.

All these parameters were also obtained from [36] and are provided in S1 Table.

The information state ri 2 [0, 1] accounts for the information that an agent i has about the

epidemic at a given time. Whilst ri = 0 indicates that agent i is completely unaware of the epi-

demic, when ri = 1, agent i becomes completely aware of the epidemic and the state of its envi-

ronment, knowing exactly how to prevent the infection. We consider ri as a function of time

given by riðtÞ ¼ r
qiðtÞ
i , where ρi 2 [0, 1] is the awareness decay constant of agent i. On the other

hand, qiðtÞ 2 N is the information quality constant of agent i, which is also a function of time,
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being q(t) = 0 the maximum information quality. Importantly, each agent has its own aware-

ness decay constant that is sampled from a certain distribution p(ρ). This sampling procedure

introduces heterogeneity into the system in the sense that every agent may follow a different

trajectory along the simulation not only due to the stochastic nature of the Montecarlo simula-

tion, but also influenced by their own awareness. Let us say, we want to apply this model to

describe the evolution of an epidemic in a certain society, we state that p(ρ) should be some-

how assembled by considering sociological, economic, political, and cultural elements, among

others, of that specific society. Nevertheless, to the best of our knowledge, there is no clear the-

ory that could help us to infer the proper p(ρ) based on the actual relationship among all those

factors. Still, for simplicity, we can assume that p(ρ) exists, expecting that societies with higher

trust, either between each other, the institutions, or the communications media, will have a

tendency to have a higher degree of awareness and for longer times, than that of societies with

lower trust, particularly when they are exposed to valuable information on how to deal with

the spreading of an infectious disease.

The information quality constant qi(t) has a very interesting dynamics. Counter-intuitively,

as mentioned before, maximum information quality is reached when qi(t) = 0, which makes βI,
D (1 − ri) to vanish resulting in a form of Behavioral Immune System for that agent, at least

during that time step. As stated before, new information can be gathered by agents through

three different sources: i) through the action of a global source that periodically feeds informa-

tion into the system, setting qi(t) = 0 for all the informed agents; ii) from direct contact with

agents in the same patch having information of higher quality, setting qi(t) = qj(t) + 1; or by iii)

acquiring the disease, in which case the exposed agent gets informed when receiving the virus,

setting qi(t) = 0. Furthermore, information quality degrades in time, one unit per time itera-

tion. Thus, for the case of t + 1, i.e. when a time unit goes by in the simulation, and according

to the previous paragraph, the information quality constant of an agent i can turn into:

qiðt þ 1Þ ¼

1 if either agent i is exposed to global information

or agent i is infected at time t

qjðtÞ þ 2 if agents i and j interact and qjðtÞ < qiðtÞ

qiðtÞ þ 1 otherwise

:

8
>>>>>>><

>>>>>>>:

ð1Þ

Of note, when agents i and j interact, information transfer from an agent with higher quality to

an agent with lower quality occurs, and simultaneously, a time unit goes by in the simulation.

Hence, we add one unit because of communication and one unit because time goes by, result-

ing in qi(t + 1) = qj(t) + 2. As expected, communication between agents only occurs if both

agents are alive. A schematic representation of our ABM is shown in Fig 1, where we show

graphically most of the aforementioned concepts.

To account for the heterogeneity of space in the simulation, agents were located randomly

in the grid following a uniform distribution. The initial information quality constant was

defined as qi(0) = 100 for all agents, except for the ones that were initially infected, whose ini-

tial information quality constant was defined as qi(0) = 0. Despite unbounded, we did set qi(0)

= 100 because it is a number representing low information quality such, when applied to

ri ¼ rqi , it gives a result close to zero. In other words, when qi(0) = 100, for ρ 2 [0.1, 0.9] the

information state ri 2 [10−100, 2 × 10−5], meaning that agents have a negligible awareness of the

pandemic situation. To ensure both information and epidemiological dynamics, we choose to

start the simulation with 100 agents having Qi = I and the remaining agents starting in the sus-

ceptible compartment, i.e. with Qi = S.
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Results

On the influence of homogeneity and heterogeneity of agents

One of the main critiques to traditional ODE-based compartmental models is the restriction

imposed by the well-mixed assumption where mass-action dynamics occur. Its equivalence in

ABM is when we assume that all agents have the same characteristics, being uniformly distrib-

uted in the space, so they are chosen randomly at the moment of updating their epidemiologi-

cal states. Several authors have discussed this issue suggesting that including heterogeneity is

desirable when modeling the dynamics of epidemic outbreaks [32, 69–71]. Heterogeneous and

quenched mean-field theories using representations of the space-based on complex networks

[72], can also be used to represent heterogeneity in dynamical systems. However, ABM models

represent a straightforward way to deal with heterogeneity, since specific features that are

unique to each agent can be individually associated. Furthermore, different types of spatial

environments with heterogeneous features can be added into the system, for example transit

of pedestrians or public gatherings in specific geometries, such as cities or neighbors. Another

approach that has shown to be quite successful in this line is the use of complex networks,

where nodes can represent either an individual or a group of them. In this context, it has being

shown, for instance, that large fluctuations in connectivity between population networks, may

strengthen the incidence of epidemic outbreaks [73].

We have in our simulation certain degree of heterogeneity given by the spatial dynamics:

agents which start randomly distributed in the space and become spatially closer as the simula-

tion goes by, are more likely to interact than those being distant apart. More importantly, we

explored the effect of having homogeneous and heterogeneous societies, by considering both

the information quality qi that each agent has in the system, and different distributions of the

awareness decay constant p(ρ). Of note, as qi changes along simulation time following the

interaction dynamics between agents, heterogeneity of information quality is expressed by the

different distributions of qi that may arise from the simulation. On the other hand, as the

awareness decay constant ρ is defined as a parameter of the simulation, to enforce heterogene-

ity we sampled a distribution of ρ considering that ρi 2 [0, 1]. Hence, two options arise: i) the

first one representing a homogeneous society, where all agents have the same awareness decay

constant ρi = ρm, where ρm represents the mode of the distribution. Therefore, the decay

Fig 1. Graphical scheme of our agent-based model. The dynamics of the spreading of the infectious disease is depicted in the left side, where βI and βD
represent the infection rate of infected agents and dead agents, respectively. Black lines represent deterministic transitions, in days, between states. Blue

lines represent infections and, in orange, agents that get buried or removed from the system. The dynamics of information transfer between agents (local

communication) is depicted in the right side using blue dashed lines. Information coming from a central entity to the population (global communication),

is represented by red dashed lines. Each agent i in the middle zoomed circle is defined by a vector (zi,Qi, ri) where the set of parameters represent its

position in the space, its epidemiological state and its information state, respectively. The physical space representation, where each square represent a patch
and the shaded agents represent a sample of agents distributed in space, is represented by gray discontinued lines in the background.

https://doi.org/10.1371/journal.pone.0257995.g001
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constant for such a society could be formally described as sampling ρi from a delta distribution,

given by

p1ðrÞ ¼ dðr � rmÞ ; ð2Þ

where δ is the Dirac delta and ρm represents its center. The second case corresponds to a ii)

heterogeneous society, for which the decay constant can be obtained by sampling ρi from a

truncated Gaussian distribution, given by

p2ðrÞ ¼

ffiffiffi
2
p

s
ffiffiffi
p
p

e
� 1

2

r � rm
s

� �2

HðrÞHð1 � rÞ
erf ½rm=

ffiffiffi
2
p

s� � erf ½ðrm � 1Þ=
ffiffiffi
2
p

s�
:

ð3Þ

In this case, σ is the standard deviation of the associated untruncated Gaussian distribution

(which was chosen as σ = 0.2), ρm is the mode of the distribution, H is the Heaviside step func-

tion, and erf is the Gauss error function. Examples of truncated Gaussian distributions p1 and

p2 using different values of ρm, are shown in panels (a) and (b) from Fig 2, respectively. Impor-

tantly, we decided to use the mode of the truncated Gaussian distribution so to produce a dis-

tribution of ρ surrounding a central representative value ρm, which can be understood as a

Fig 2. Accessing homogeneity and heterogeneity effects on the ABM simulation. Different probability distributions of the awareness decay constant ρ
were used to evaluate the effect of heterogeneity by considering a sampling process from a (a) Dirac delta and (b) a truncated Gaussian distribution. In both

plots, bars are the sampled distribution and solid lines are the analytic curves, where the arrows in (a) indicate the delta function. (c) Evolution along time

of susceptible agents for different values of the mode of decay constant ρm vs the ratio of informed agents α. Continuous lines represent simulations where

ρm is sampled from a Gaussian distribution and dotted lines, the sampling from a Dirac delta distribution. Shaded areas represent the standard deviation

obtained from 100 independent simulations. (d) Density plot of the final ratio of susceptible agents at the end of an epidemic when there is a heterogeneous

distribution of ρ, for different values of ρm and α. Contours lines show the boundary for high and low impact epidemic. (e) Density plot of the difference of

final susceptible agents between homogeneous and heterogeneous systems for different ρm and α. Contour lines delimit areas of low and high difference

between systems. In panel (a) and (b), points A, B and C represent different values of ρm, 0.8, 0.6 and 0.1, respectively. In figures (c), (d) and (e) those points

represent the pair (ρm, α), being A0 = (0.8, 0.7), B0 = (0.6, 0.5) and C0 = (0.1, 0.4). Points are set in interest regions, high (A0), middle (B0) and low (C0) impact

of the information on the epidemic dynamics.

https://doi.org/10.1371/journal.pone.0257995.g002
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delta distribution with lateral non-symmetrical diffusion, in both directions. As noted in Fig

2b, when producing a truncated Gaussian distribution of ρ using as center the ρm obtained

from the Dirac delta (Fig 2a), three heterogeneous distributions of ρ, denoted A, B and C, were

produced. Whereas distribution A resembles a skewed right distribution, distribution C

resembles a skewed left distribution.

In order to characterize both the similarities and differences between the homogeneous and

the heterogeneous cases, and considering the stochastic nature of the ABM, we executed a

large number of simulations, evaluating the effect of different parameters of the system. We

used a scheme where information is delivered from a central entity (global information) to a

certain portion α, randomly selected, of the total population in every step of the simulation.

Thus, we have a 2-D parameter space with (ρm, α) 2 [0, 1] × [0, 1] and we systematically

explore it by sampling (ρm, α) with steps dρm = 0.02 and dα = 0.1. For each point in the param-

eter space, we run 100 simulations lasting for 1000 simulation days each one, which adds up to

a total of 56, 100 independent simulations for each case. We observe that after this extended

simulation time, the system has virtually reached its equilibrium state, as can be noted by

tracking the evolution of the number of susceptible agents along time. Specifically, we compute

hS(t)i, which is the ratio between the amount of susceptible agents and 104, which is the total

number of agents at the beginning of the simulation, at time t and averaged over 100 simula-

tions. A comparison of hS(t)> as a function of time for three homogeneous and heterogeneous

cases, marked with dotted and continuous lines, respectively, is presented in Fig 2c. Selected

points in the parameter space are labeled as A0 = (0.8, 0.7), B0 = (0.6, 0.5), and C0 = (0.1, 0.4).

Whilst in A0, the disease is stopped right away from a very early stage of the propagation, on

the other hand in both B0 and C0, the disease spreads over the population. We quantify the dif-

ference between the outcome of the homogeneous and the heterogeneous cases by computing,

D ¼ Sð1Þf � S
ð2Þ

f

�
�
�

�
�
� ; ð4Þ

where the superscript (1) and (2) denotes the difference between the homogeneous and hetero-

geneous cases. For simplicity, from now on we will adopt the notation SðiÞf , or simply Sf, with

suffix f and without the brackets h�i, to indicates the value of hS(t)i at the end of the simulation,

i.e. at t = 1000 [days]. The use of notation with superscript will be only in sections where multi-

ple cases are discussed at once. In general, Sf is an interesting metric because it allows us to

analyze the system at the equilibrium state. Furthermore, Δ is bounded by 0 and 1 and it repre-

sents a difference in terms of fraction of agents relative to 104 (initial total population). Its lim-

iting values indicate that both cases are identical, when Δ = 0, or both cases are totally

disparate, when Δ = 1. Remarkably, the outcomes of the simulations in cases A0 and C0 are

quite similar, we have Δ< 0.02, whilst in case B0 the difference increases and we have Δ� 0.07.

Now, we thoroughly explore Δ over the entire parameter space. In Fig 2d we show how Sð2Þf
looks as a function of the parameters α and ρm in the heterogeneous case. From here we can

analyze the effect of the parameters over the outcome of the system. The dark blue zone indi-

cates the region where the disease spread is barely affected by the available information, con-

trary to what happens in the bright yellow region where the disease is under control. Extreme

examples of societies for these two opposite scenarios are those with ρm = 0 and ρm = 1, respec-

tively. Additionally, in stark contrast to what our initial intuition could have told us, homoge-

neous and heterogeneous simulations are very similar for most of the parameter space, as

shown in Fig 2e. Here, we can see that the major difference between the simulations is reached

when there is very little information being delivered by the central entity, i.e. α! 0, but only

in societies with a tendency towards ρm closer to 1, but not exactly 1. As α increases, Δ tends to
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decrease, however, this does not happen in a monotonic way for all values of ρm. Instead, for

some values of ρm we observe first a subtle increase for small values of α and then a descending

behavior.

Overall, these results suggests that the heterogeneous component added by the distribution

p2(ρ) into the simulation is not that relevant, at least in a large domain of the parameter space

where its effect is marginal compared with choosing p1(ρ). It is worth noting that if we could

certainly test many distributions to investigate the equivalence of the system, a truncated

Gaussian distribution is enough to prove that the system behaves similarly with a slight degree

of heterogeneity. With a slight degree of heterogeneity, we refer to a distribution where not

heavy tails are present. For this reason, in what follows on this article, we work only in homo-

geneous systems with p(ρ) = p1(ρ) as described by Eq (2).

Non-pharmaceutical strategies based on communications

We now examine the impact of different communication strategies on the epidemic spreading.

To do so, we rely on different patterns of information delivery from a central entity to a certain

fraction α of the population. Hence, we study three different strategies, namely strategy I, II,

and III. By following strategy I, we inform on a daily basis to a fraction α of the agents in the

simulation, that is chosen randomly among the living agents, following a uniform distribution.

In strategy II, we inform to the entire population, but contrary to the previous strategy, this

happens every τ days. Finally, in strategy III, we inform on a daily basis to the entire popula-

tion, only after δ days have passed, since the beginning of the epidemic.

As we previously proceeded, in all three strategies we are interested in the outcome of the

epidemic by evaluating the number of susceptible agents at the end of the simulation, i.e. at

t = 1000 [days]. However, at t = 600 [days] the system has virtually reached the equilibrium

state. In this section, we use a slightly different notation compared to that of the one used in

the previous section. The superscript (x) in SðxÞf can take values in {α, τ, δ} and it now indicates

which strategy is being analyzed. Again, depending on the context we use either SðxÞf or simply

Sf.
Strategy I: Daily information to a fraction α of the population. The first strategy, dis-

cussed in general terms in the previous section, will be analyzed in further details. As seen in

Fig 3a, the value of SðaÞf is depicted for 11 simulations executed considering different values of

α, ranging from 0 to 1. We also present a control case, indicated by a dashed line at the bottom

and a double asterisk symbol (��), for which no information at all is present in the system. In

this case, we obtain a value of Sf� 0.16. We may recall that there are three mechanisms for the

agents to acquire information: i) from agent to agent; ii) when agents acquire the disease and

get informed, and the last one, iii) by agents acquiring information from a central entity. In

the case of Strategy I, the first two mechanisms are always on, therefore, even when α = 0,

agents may still have access to new information. Of note, the latter case may act as a control sit-

uation in which α = 1. We termed this case as the ideal situation considering the complexity

involved in implementing such a strategy during a real epidemic—accounting for logistic and

other factors. As expected, the ideal case has the best results in terms of reducing the impact of

the epidemic for all values of ρm. This case is highlighted with a single asterisk symbol (�) and

appears on top of all the other more realistic cases. It is worth noting that, both controls, i.e.

cases with single asterisk and double asterisk, appear inherently for the three strategies, as

shown in panels (b) and (c) of Fig 3.

As expected, all curves Sf in Fig 3 suffer a transition from a state where communication

does not affect the epidemic spreading at all, for values of ρm closer to 0, to a state where
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communication conduces to a complete suppression of the epidemic, stopping its spreading,

for values of ρm closer to 1. The way how these transitions occur for different values of α, how-

ever, is quite interesting and highly nontrivial. In all cases, we observe a type of generalized

logistic behavior in the transitions. As a consequence of this transition, the effectiveness of the

strategy depends strongly on the characteristic ρm of the society and, of course, the parameter

α. For example, for societies with ρm = 0.8 we have that if no actions are taken in terms of

informing agents from any central entity, that means α = 0, then the effect is quite similar com-

pare to the control double asterisk (see Fig 3). On the contrary, if we inform as little as α = 0.1

of the total population, the increment in the amount of susceptible agents at the end of the sim-

ulation is considerable, having Sf� 0.59. When α = 0.3 we basically stop the epidemic from the

beginning and Sf� 0.92 in this case, which is remarkable considering the small amount of

agents being informed. Nonetheless, if we perform the same analysis but this time we consider

ρm = 0.2, the impact of the strategy is very limited, even if we have α = 1, which is the ideal

case. The scenario at the end of the epidemic, in this case, is Sf� 0.28. In a more intermediate

case, such as considering a society with ρm = 0.5, the results are more sensitive to the variation

of α over a larger range of parameters. In this case, for example, we can jump from Sf� 0.34,

for α = 0.3, to Sf� 0.51, for α = 0.6, or to Sf� 0.69, for α = 0.9. As noted in Fig 3a, there is an

evident non-linear relationship between α and ρm. Particularly, we can see that our system

behaves similarly for different values of α when ρm is close to 0.0 or close to 1.0, but for inter-

mediate values of ρm, the high non-linearity of the system arise, denoted by a higher difference

for the α curves. When ρm is close to 0.0, all the population has a fast decay of awareness, and

inversely, when ρm is close to 1.0 all the population have a slow decay of awareness, so the per-

centage of informed people α does not contribute substantially to the final size of the epidemic.

Now, for an intermediate case of ρm, there is not a clear predominance of the agents with fast

decay of awareness or agents with slow decay of awareness, resulting in a substantial difference

when informed different fraction of population α.

This high variability in the results depending on the election of ρm is not uncommon at all

in these type of studies. The inference of the right parameters is one of the most difficult parts

Fig 3. Accessing the effect of different communication strategies on the epidemic outcome. In all panels the final ratio of susceptible agents after 1000

days of simulation for different values of ρm. (a) Central information delivered to the population while the ratio of informed agents changes. Different

curves represent different ratios of informed agents α, ranging from 0 (olive line) to 1 (blue line) with 0.1 interval. (b) Periodicity of information delivery.

Different curves represent different periodicity of information τ, delivered to the population. We have tested periodicity daily from 1 day (blue line) to 7

days (pink line), and then weekly, at 14, 21 and 28 days (green line). (c) Delay in starting information delivery. Different curves represent different delays δ,

considering the elapsed time to deliver the message from the beginning of the epidemic. We have tested delay in the first message from 0 (blue line) to 90

days (light blue line) with 10 days interval. After the first message arrives, subsequent information is delivered daily. In all panels, shaded areas represent the

standard deviation for 100 simulations. A � above blue line indicates the ideal strategy, and �� above orange dashed line indicates the worst strategy, i.e.,
when there is no central information delivered to the population neither information delivered to infected agents. Curves with higher values of hSðxÞf i where

x 2 {α, τ, δ} implied a better strategy result, i.e., less infected agents.

https://doi.org/10.1371/journal.pone.0257995.g003
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when trying to apply these type of models in a real situation. For this reason, the use of empiri-

cal data to feed models should be mandatory when a more concrete or applied analysis is

required. However, everything is not lost and we can still use these models to learn valuable

lessons and generate intuition.

Strategy II: Information every τ days to the entire population. We now turn to assess

the impact that the periodicity of sending information could have on the spread of an infectious

disease. In this strategy we have started informing on day 0, regarding the epidemic start day,

and varied the number of elapsed days between consecutive messages. We started with a low

periodicity, daily information delivery, and then we changed one day a time until completing the

first week, then we tried with 2, 3 and 4 weeks of delay between messages from a central entity.

Results from this strategy are shown in Fig 3b, where we can see how the distances between

curves Sf decrease as we increase the period in which messages to the population are sent. We

also highlight the difference between informing daily (Sf shown by �) and informing each two

days (orange curve), where we can notice the largest difference between consecutive Sf. We

can see this, for example, in societies with ρm = 0.5, where if we have daily information delivery

τ = 1 then Sf� 0.75, but if we increase the delay in one day, i.e., τ = 2, then Sf� 0.50, which

indicates a difference in the final susceptible population of 0.25 between informing daily and

each two days. If we see τ = 3, we have that Sf� 0.38, which is a difference in the final suscepti-

ble population of 0.12 comparing to τ = 2, which is less than half of the difference between τ =

1 and τ = 2. This result shows us that, as the periodicity of information increases, it becomes

less relevant to delay or to advance one day the information delivery, being the largest differ-

ence between informing daily and each two days. To elaborate from another point of view on

this conclusion, we include S2 Fig, where the final number of susceptible agents changes when

the timescale of information, represented by τ, varies. Indeed, we can see in S2 Fig a fast decay

for the firsts τ, and then a slow decay, representing a kind of “long-tailed” decay, which

denotes the importance of sending information with low periodicity—i.e. high frequency.

In literature, we find a similar work [74], that also focuses on the effects of sending periodic

information to the population, denoted by authors as “pulsating campaigns”, under the

assumption that there is a communication of the risk towards people, which fulfills a role simi-

lar to awareness in our work. Their conclusion regarding this type of campaign is that it is bet-

ter a pulsating campaign instead of a campaign where the people are informed constantly, all

this under an oscillatory dynamics of infection, i.e. where the infected cases grow, decay, and

then repeat this dynamic. They explain this result as a consequence of an abrupt increase in

risk communication when starting a campaign. Despite is not possible a direct comparison, as

we don’t have oscillatory dynamics of infection, we can make some assumptions, for instance,

that if we had oscillatory infection dynamics, we probably wouldn’t have some abruptly

increase of awareness (doing a simile with risk definition), and due to this, contrary to [74], it

is probable that a continuous strategy would be better in our model (shorter periods are better

for the population in our model). Without a doubt, delving into these types of strategies can

show us optimal ways to reduce infections.

In summary, our results show that the best strategy to achieve a significant reduction in the

number of infected agents at the end of the simulation, is to inform daily. Although this result

seems obvious, we have shown that the impact of informing with a period larger than one day

is very severe, conducing to a dramatic increment in the amount of infected agents at the end

of the simulation for most of the scenarios.

Strategy III: Daily information to the entire population after δ days. Another interest-

ing question we want to address is: how much the delay in implementing the information

strategy may affect the impact of the epidemic? In other words, we would like to figure out

what happens when the information strategy includes a delay between the starting of the
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epidemics and the delivery of information to the population. To answer this question we

changed from 0 to 90 days, each 10 days, the start day of the information delivery. To be con-

sistent with the previous findings, after the information strategy started, we delivered informa-

tion on a daily basis. Results from this strategy are shown in Fig 3c, where considering a delay

of δ = 0 and δ = 10 the resulting curves are very close, indicating that it is similar to start the

information strategy on day zero, compared to starting it 10 days after the start of the epi-

demic. This effect becomes even clearer when comparing three different societies, i.e. three dif-

ferent ρm, through its different curves Sf. To do so, we evaluated the curves resulting from a

delay of δ = 0 and δ = 10. For ρm = 0.2 there is a difference<0.01 in the ratio of final susceptible

agents, when ρm = 0.5 the curves have a difference of 0.03, and when ρm = 0.8 the difference is

0.02. As noted, all the numeric values are close to zero, which tells us how similar is the out-

come of all these strategies. A similar situation becomes evident if we compare the curves

for δ = 0 and δ = 20, where for the case of ρm = 0.2 the difference is<0.01, while for the case of

ρm = 0.5, the difference is 0.07, and for the case of ρm = 0.8, the difference is 0.04. These results

show us that for δ = 20 there is a subtle difference comparing to the ideal case of δ = 0. Now,

instead of comparing curves of delays δ, we compare different δ for the same society. For socie-

ties with low values of ρm, for example ρm = 0.2, the final population of susceptible agents Sf is

similar when applying different delays δ in delivering the information: when δ = 30, a final sus-

ceptible population of Sf� 0.25 is obtained, and when δ = 60, a Sf� 0.28 is obtained, whereas

for the case of δ = 90, a value of Sf� 0.29 is obtained. These results highlight how similar are

the responses of the system when considering different delays in information delivery. Of

note, this difference become larger when we have societies with higher ρm, for example ρm =

0.5, where we have that for the cases of δ = 30, δ = 60 and δ = 90, the final susceptible popula-

tion is Sf� 0.45, Sf� 0.64 and Sf� 0.75, respectively.

With these results in mind, we may conclude that the delay in information delivery has less

impact in the size of the epidemic for societies having ρm in the extremes, i.e. low and high val-

ues of ρm.

When comparing these results with that of strategy II in which we evaluate the effect of the

periodicity of information, we may argument that is more important to inform on a daily basis

than starting the promptly, as-soon-as-possible, delivery of information to the population. It is

worth noting that this result is consistent with the one presented in [22], where the authors dis-

cuss about the importance of the rate at which awareness programs are executed. This same

strategy comparison is included in S3 and S4 Figs but from the point of view of cumulative

dead agents and removed agents, respectively, which, in addition to reinforcing this conclu-

sion, could help to better understand the impact of these results. For completeness, in the next

subsection we proceed to compare the outcome of these three strategies.

Accessing the similarities between strategies. An interesting observation from Fig 3 is

that several curves Sf, as a function of ρm, share a similar shape between them for different

strategies. This leads to an interest from our part in quantifying this similarity and try to estab-

lish a kind of equivalence relation, between specific pairs obtained from different strategies.

For example, by simple visual inspection one could be tempted to say that informing every X
days to the entire population is more or less equivalent than informing every day to a Y portion

of the total population. However, this equivalence immediately raises various questions. For

instance, a fundamental one is how can we say that two curves are equivalent, or similar, in

this context? To address this interesting question, we used a measure of the distance between

two curves SðxÞf and SðyÞf given by

zðx; yÞ ¼
Z 1

0

SðxÞf � S
ðyÞ
f

�
�
�

�
�
�drm ; ð5Þ
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where x and y symbolize the value of the parameters for the different strategies that we are

comparing. To illustrate this, let us say that we are interested in comparing strategy II with

strategy I for the parameters τ = 2 and α = 0.6. In this case, we have z(2, 0.6) = 0.17 where this

number indicates the area between the two curves. The closer z is to zero, the closer the curves

are to each other. We have observed that when z is less than 0.35 the two curves are virtually

indistinguishable from each other and each of them is within the standard deviation of the

other for almost all of the values of ρm. We are now interested in solving a minimization prob-

lem for z, in which given a certain value of the parameter x for one strategy, we are interested

in finding the value of the parameter y for another strategy, such that it minimizes z, i.e. there

is no other value of y that gives a lower value for z. Some examples of pair of curves that mini-

mize z are shown in S5 Fig for different strategies. Furthermore, we explore this in a systematic

way and find a large collection of pairs (τ, α), (τ, δ), and (α, δ), which are summarized in

Table 1. Interestingly, when comparing strategy II with strategy I, we can find very similar

results for the outcome of the epidemic for a large collection of parameters—for all the values

of τ that we explored we were able to find a value of α such that it minimizes z and also holds

the condition z(β, α)< 0.35. Therefore, we conclude that, independently on the value of ρm for

the society and under the assumptions of our simulations, informing to the entire population

every 2 [days] conduces to similar results than informing to just a 0.60 of the population every

day. On the same page, informing to the entire population every 3 [days] conduces to similar

results than informing to just a 0.38 of the population every day. And so on, following the val-

ues in Table 1. We would like to highlight now a point that is extremely valuable, and defini-

tively it is something that should be worth to take into consideration when exploring

communication strategies in a more practical scenario: α decays rather quickly as τ increases,

as shown in Table 1. This remarks the notorious importance of keeping a well-informed popu-

lation under a quite frequent scheme during an epidemic.

When comparing τ with δ, even though we can still formally solve the minimization prob-

lem, we find that the curves are quite different, at least for a broad range of the parameter ρm.

This is shown in Table 1 by the large values obtained for z, which are all above 1.3, except for

the control cases τ = 1 and δ = 0. Something very similar to this happens when comparing δ
with α, however, additionally to the control case, we also have a single nontrivial case with δ =

10 and α = 0.96 that provides z(10, 0.96) = 0.33.

Table 1. Similarity between different communication strategies.

τ α z(τ, α) τ δ z(τ, δ) δ α z(α, δ)

1 1.00 0.07 1 0 0.08 0 1.00 0.09

2 0.60 0.17 2 28 1.63 10 0.96 0.33

3 0.38 0.12 3 60 2.07 20 0.90 0.67

4 0.26 0.14 4 74 1.96 30 0.82 1.03

5 0.20 0.08 5 80 1.79 40 0.68 1.44

6 0.16 0.15 6 86 1.57 50 0.52 1.78

7 0.12 0.12 7 90 1.38 60 0.42 1.93

A comparison between the three strategies of information delivery evaluated in this work is presented above,

organized in subtables. On each subtable, values from the first and second column are compared. The third column

presents the z value corresponding to the area under the curve of the absolute value computed for the difference

between curves SðxÞf and SðyÞf , corresponding to the compared strategies (see Eq (5)). Close values of z to zero are

indicative of more similar curves.

https://doi.org/10.1371/journal.pone.0257995.t001
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On the impact of agents’s communication in the spread of an infectious

disease

Now we turn to explore the importance of communication between agents on the impact of

the spread of an epidemic disease. To do so, we evaluated the impact of strategies focusing on

encouraging agents’s communication to decrease the size of an epidemic. Hence, we consider

communication between agents as the act of sharing information about the disease between

agents, when they are physically close to each other.

Assessing the impact of agents’s communication without the delivery of central infor-

mation. First, we explore the impact on the epidemic when there is only communication

between agents, without central information delivery. In other words, agents do not receive

information from mass media/central entity, neither infected agents receive information when

acquiring the virus. Therefore, the only source of information is the initial information that

agents have at the beginning of the simulation. We have tested this strategy to determine if

solely the communication between agents is capable to stop the spread of an infectious disease.

To do so, we set the system with ratios 1, 0.1, 0.01 and 0.001 of the initial number of informed

agents, allowing agents to communicate freely between them. Results in Fig 4a, denote that the

impact on the epidemic outcome of this strategy is meaningless, as the four curves appear

overlapped. In other words, these results tell us that no matter how many agents are informed

at the beginning of the epidemic, when central information is absent, the final size of the epi-

demic will not be affected.

Although is expected that this strategy is not effective, due to the fast decay of information

quality in time, given by qi(t + 1) = qi(t) + 1, what it is surprising is that it has zero impact even

when all population is informed at the beginning of the simulation. This result shows us that

the initial information of the system has no impact on the output of an infectious disease when

there is no central information being delivered to population. Of note, we may also say that a

strategy relying purely on agents’s communication should not be enough to stop the spread of

the disease, for most of the values of ρm.

Encouraging communication between agents when there is central information deliv-

ery. Finally, we evaluated the impact on the dispersion of the epidemic when both agents to

agents communication and central information are present. To do so, we compare the results

of systems where no communication between agents is present with that of the system when

communication between agents is activated. In all systems we included the delivery of infor-

mation to agents once they acquire the virus have considered information to recently infected

agents (they obtain information when they get infected). To illustrate the difference between

these systems we have selected three points A, B and C that belong to the parameter space (ρm,

α), as can be seen in Fig 4b. For each selected point, two curves are depicted: the continuous

curve representing deactivated communication between agents and the dotted curve, repre-

senting activated communication between agents. We can see that for A and C the continuous

and dotted curves are identical, but for B there are some differences, showing us that, in this

point, communication between agents actually affects the output of the spread of the infectious

disease. To further study this behavior, exploring in a systematic way the parameter space

formed by (ρm, α), we created a density plot of ρm and α, as seen in Fig 4c. In panel c), the dif-

ference between systems can be further accessed by relying on the color bar map. We can see

that for a big portion of the space, communication between agents is almost irrelevant (dark

blue zones), but there is a portion where it plays an important role, being A and C in the zone

where agents communication is irrelevant and B being in the zone showing relevant differ-

ences. This interest zone where agents communication plays an important role is characterized

for a high ρm and a low α, which could be interpreted as when there is little to non central
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information delivery (low values of α) and societies with a tendency towards ρm closer to 1, the

communication between agents could help to decrease the size of an epidemic. Likewise, when

there is medium to high central information delivery, this being around α = 0.45 and above,

communication between agents becomes irrelevant, independently of the ρm of the society.

For completeness, we show in more detail the zone of interest, ranging from ρm = 0.5 to ρm =

0.9 and α = 0.0 to α = 1.0, in Fig 4d where we can see how the difference between systems with

agents communication activated and deactivated change due to different ρm and α. We can

clearly see a tendency that for higher ρm and lower α, larger is the difference between systems,

decreasing when α increases. This again, show us that communication between agents become

irrelevant when there is a high central delivery of information to population. As we are not

Fig 4. Assessing the impact of communication between agents on the outcome of an epidemic. (a) Only agents to agents communication without

central information in the system is allowed, considering different proportions of the initial population informed: 1, 0.1, 0.01 and 0.001. The four curves

represent the final ratio of susceptible agents of a 600 [days] simulation when the mode of the awareness decay constant ρm, increases. Shaded areas

represent the standard deviation for 100 simulations. The inset figure zooms in the interval ρm 2 (0.70, 0.74) to graphically show how close to each other the

curves actually are. (b) Evolution in time of susceptible agents for different values of α and ρm when central information is available. Continuous lines

represent simulations where communication between agents is inactivated and dotted lines where communication is activated. (c) Density plot of the

difference between systems where agents communication is inactivated and activated for different values of ρm and α. For figures (b) and (c) the points A, B

and C represent the pair (ρm, α) with values (0.8, 0.7), (0.7, 0.3) and (0.2, 0.2), respectively. (d) Difference between two systems, where in the first one agents

communication is inactivated and the second one is activated, for different ratio of informed agents α. Different curves represent different ρm. Shadows

areas represent the propagation of uncertainty (both systems have a standard deviation resulting from sampling 100 simulations, and because of this, we

propagate the uncertainty of the difference between the systems).

https://doi.org/10.1371/journal.pone.0257995.g004
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capable, yet, to know the ρm for a society, we think that this strategy of encouraging agents

communication should always be implemented, because if we are lucky enough of being

implementing this strategy to a society with ρm close to 1, we will have a considerable impact

in reducing the size of the epidemic. We think that this strategy of encouraging agents commu-

nication could be useful when there is limited access to public or massive information, as was

the case of the 2014–2016 Ebola outbreak in West Africa, where the affected countries had lim-

ited access to mass communication [75].

Conclusion

Since the beginning of 2020 the world has been living under the influence of the COVID-19

pandemic. Hence, we dealt with the idea of using COVID-19 instead of EVD to study the

influence of information on the spreading of an infectious disease. Despite the abundant

COVID-19 related literature, to the best of our knowledge, still no consensus on both models

and parameters successfully describing the COVID-19 dynamics has been reached [76–78].

Therefore, we decided to stick with EVD because the SEIRD model, using proper parameters,

has proven to effectively describe the evolution of EVD in human populations [36].

From a modeling perspective, EVD as well as other infectious diseases, share similar spread-

ing principles that can be captured using compartmental models. Even though we presented

results coupling information with the SEIRD model, this coupling could be possible using any

other compartmental model. In this sense, our approach is somehow universal. For instance, if

we wanted to apply our model to COVID-19, despite exhibiting a SEIRD-compatible dynam-

ics, then the parameters should be set to the specific values of COVID-19 instead of EVD.

To study the influence of different communication strategies on the spreading of infectious

diseases such as EVD, we decided to use the ABM framework. This framework allows us to

explore at an individual level, the coupling of information and the spreading of an infectious

disease, evaluating the influence of global (i.e. central entity or mass media) and local (i.e.

agents’ communication) information, assuming that awareness decays in time and informa-

tion’s quality decays when it is transferred from one person to another.

Our results show a remarkable difference in the impact of the epidemic when we compare a

population not informed at all against a small fraction of informed population. Of note, our

results show that it is preferable to have a communication strategy delivering daily messages

than the delivery of prompt information, as soon as possible. Considering the dynamics of

local communication, we show that the initial number of informed agents is irrelevant to the

output of an epidemic when new information is not entering frequently into the system. More-

over, for some societies, local communication between agents plays an important role when

the information entering into the system is scarce, becoming irrelevant when a large portion of

information is regularly coming from a central entity.

Regarding how our results can be associated with certain societies, we postulate that when

ρm becomes close to 1, it should resemble societies with high trust. Of note, high trust societies

tend to exhibit higher social capital, a beneficial characteristic that may lead not only to eco-

nomic growth [79] but also to the effective suppression of the spread of an infectious disease.

Probably, the most notable case is the Zero COVID strategy implemented by New Zealand

and Australia [80], two countries that exhibit high trust [81]. On the other hand, a ρm close to

0, should represent societies with low trust such as Argentina [81]. In this case, the impact on

the size of the epidemic depending on the information delay is low due to the lack of agents

trust in the central authorities.

As a whole, our results quantify the impact of communication strategies in the spread of an

infectious disease and also show the equivalences between, at first sight, different approaches
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considering both sources and frequency of delivery. We also paid emphasis to the role that

communication between agents may play to determine the final size of an epidemic.

An interesting unaddressed question that we will pursue in future work is to determine the

influence of misinformation, or fake news, on the outcome of the pandemic. Previous works

have shown that misinformation and information have notoriously different dynamics [64]:

misinformation spread faster and farther than information. Studying the behavioral modula-

tion induced by misinformation could lead us to determine its effects on the population’s

awareness and hence, its impact on the dispersion of infectious diseases.

As a whole, this work helps to understand the effectiveness of communication strategies as

non-pharmaceutical interventions to tackle epidemics. This knowledge can be lead to the

implementation of evidence-based public policies focused on the adoption of preventive

behaviors, which could ultimately lead to saving human lives.

Supporting information

S1 Eq. SEIRD model equations. Equations that describe the evolution in time of the states of

the system, where S are susceptibles, E exposed, I infected, R removed and D dead agents. The

parameters of the system are shown and explained in S1 Table. This model was proposed by

[36].

(PDF)

S1 Fig. ABM evaluation against the literature. (a) ABM, temporal evolution of the states of

the system for 100 repetitions. The shaded area is the standard deviation. (b) Same model in

deterministic ODEs system. In both panel, curves represent the temporal evolution of the

states of the system. The legend for each states represent the final ratio of agents at the end of

the simulation. Maximum infected in ABM, 577 persons in t = 129 [days], maximum infected

in ODE, 542 persons, in t = 135 [days]. It is worth noting that these systems do not include the

information model”.

(TIF)

S2 Fig. Normalized area under the curve Λ vs τ. Λ represent the area under the curve for

each curve τ in Fig 3b. We can see how Λ, represented by red dots, decrease as τ increase. (a)

Daily analysis. (b) Weekly analysis. Continuous lines represent the tendency of the curve.

(TIF)

S3 Fig. Accessing the effect of different communication strategies on the epidemic out-

come for cumulative dead agents. We replicate the analysis in Fig 3 but instead of susceptible

agents now we have the cumulative dead agents. All panels show the final ratio of cumulative

dead agents after 1000 days of simulation for different values of ρm. (a) Central information

delivered to the population while the ratio of informed agents changes. Different curves repre-

sent different ratios of informed agents α, ranging from 0 (olive line) to 1 (blue line) with 0.1

interval. (b) Periodicity of information delivery. Different curves represent different periodic-

ity of information τ, delivered to the population. We have tested periodicity daily from 1 day

(blue line) to 7 days (pink line), and then weekly, at 14, 21 and 28 days (green line). (c) Delay

in starting information delivery. Different curves represent different delays δ, considering the

elapsed time to deliver the message from the beginning of the epidemic. We have tested delay

in the first message from 0 (blue line) to 90 days (light blue line) with 10 days interval. After

the first message arrives, subsequent information is delivered daily. In all panels, shaded areas

represent the standard deviation for 100 simulations. A � under blue line indicates the ideal

strategy, and �� below orange dashed line indicates the worst strategy, i.e., when there is no

central information delivered to the population neither information delivered to infected
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agents. Curves with lower values of hDðxÞc i where x 2 {α, τ, δ} implied a better strategy result,

i.e., less dead agents.

(TIF)

S4 Fig. Accessing the effect of different communication strategies on the epidemic out-

come for removed agents. We replicate the analysis in Fig 3 but instead of susceptible agents

now we have removed agents. All panels show the final ratio of removed agents after 1000 days

of simulation for different values of ρm. (a) Central information delivered to the population

while the ratio of informed agents changes. Different curves represent different ratios of

informed agents α, ranging from 0 (olive line) to 1 (blue line) with 0.1 interval. (b) Periodicity

of information delivery. Different curves represent different periodicity of information τ,
delivered to the population. We have tested periodicity daily from 1 day (blue line) to 7 days

(pink line), and then weekly, at 14, 21 and 28 days (green line). (c) Delay in starting informa-

tion delivery. Different curves represent different delays δ, considering the elapsed time to

deliver the message from the beginning of the epidemic. We have tested delay in the first mes-

sage from 0 (blue line) to 90 days (light blue line) with 10 days interval. After the first message

arrives, subsequent information is delivered daily. In all panels, shaded areas represent the

standard deviation for 100 simulations. A � under blue line indicates the ideal strategy, and ��

below orange dashed line indicates the worst strategy, i.e., when there is no central information

delivered to the population neither information delivered to infected agents. Curves with

lower values of hRðxÞf i where x 2 {α, τ, δ} implied a better strategy result, i.e., less agents that

were infected and then removed.

(TIF)

S5 Fig. Differences between communication strategies. Here we show some examples of

how similar is one strategy compared to another, where zxy denotes the differences between

curves x and y. (a) Comparison of informing each 3 days the whole population and the 38 per-

cent daily. (b) Comparison of informing each 21 days the whole population and the 2 percent

daily. (c) Comparison of informing with a delay of 20 days the whole population and to inform

daily the 90 percent of population. (d) Comparison of informing with a delay of 30 days the

whole population and to inform daily the 82 percent of population. (e) Comparison of inform

each 6 days the whole population and with a delay of 90 days. (f) Comparison of inform each 3

days the whole population and with a delay of 60 days.

(TIF)

S1 Table. Parameters for the SEIRD model. This values are for 2014–2016 Ebola outbreak in

West Africa, being TE time that spend a person in Exposed state before become Infected, TI
time that spend a person in Infected state before Dead or Recover, TD time that spend a person

in Dead state before it get buried, f fraction of infected individual that die, βI the infection rate

of Infected to Susceptible person and βD the infection rate of Dead to Susceptible person.

These parameters were extracted from [36].

(PDF)
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47. Barbarossa MV, Dénes A, Kiss G, Nakata Y, Röst G, Vizi Z. Transmission dynamics and final epidemic

size of Ebola virus disease outbreaks with varying interventions. PloS one. 2015; 10(7):e0131398.

https://doi.org/10.1371/journal.pone.0131398 PMID: 26197242

48. Bell BP. Overview, Control Strategies, and Lessons Learned in the CDC Response to the 2014–2016

Ebola Epidemic. MMWR Suppl. 2016; 65(Suppl-3):4–11. https://doi.org/10.15585/mmwr.su6503a2

PMID: 27389903

49. Bedson J, Jalloh MF, Pedi D, Bah S, Owen K, Oniba A, et al. Community engagement in outbreak

response: lessons from the 2014–2016 Ebola outbreak in Sierra Leone. BMJ Global Health. 2020; 5(8).

https://doi.org/10.1136/bmjgh-2019-002145 PMID: 32830128

50. U S Food and Drug Administration. First FDA-approved vaccine for the prevention of Ebola virus dis-

ease, marking a critical milestone in public health preparedness and response; 2019. https://www.fda.

gov/news-events/press-announcements/first-fda-approved-vaccine-prevention-ebola-virus-disease-

marking-critical-milestone-public-health.

51. FDA. Ebola Zaire Vaccine, Live; 2020. https://www.fda.gov/vaccines-blood-biologics/ervebo.

52. GAME IET. Johnson & Johnson Announces European Commission Approval for Janssen’s Preventive

Ebola Vaccine; 2020.

53. EMA. Ebola vaccine (rDNA, replication-incompetent); 2020. https://www.ema.europa.eu/en/medicines/

human/EPAR/zabdeno.

54. Kermack W MA. Contributions to the mathematical theory of epidemics—I. Bulletin of Mathematical

Biology. 1991; 53(1-2):33–55. https://doi.org/10.1016/S0092-8240(05)80040-0 PMID: 2059741

55. Abouelkheir I, Rachik M, Zakary O, Elmouk I. A multi-regions SIS discrete influenza pandemic model

with a travel-blocking vicinity optimal control approach on cells. Am J Comput Appl Math. 2017; 7

(2):37–45.

56. Greenhalgh D, Liang Y, Mao X. SDE SIS epidemic model with demographic stochasticity and varying

population size. Applied Mathematics and Computation. 2016; 276:218–238. https://doi.org/10.1016/j.

amc.2015.11.094

PLOS ONE On the effectiveness of communication strategies as non-pharmaceutical interventions

PLOS ONE | https://doi.org/10.1371/journal.pone.0257995 October 29, 2021 22 / 24

https://doi.org/10.1038/srep08751
http://www.ncbi.nlm.nih.gov/pubmed/25736239
https://doi.org/10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288
https://doi.org/10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288
http://www.ncbi.nlm.nih.gov/pubmed/25642364
https://doi.org/10.1371/currents.outbreaks.cd818f63d40e24aef769dda7df9e0da5
http://www.ncbi.nlm.nih.gov/pubmed/25642360
https://doi.org/10.1371/currents.outbreaks.89c0d3783f36958d96ebbae97348d571
https://doi.org/10.1371/currents.outbreaks.89c0d3783f36958d96ebbae97348d571
http://www.ncbi.nlm.nih.gov/pubmed/25642358
https://doi.org/10.1016/j.jtbi.2016.08.016
https://doi.org/10.1016/j.jtbi.2016.08.016
http://www.ncbi.nlm.nih.gov/pubmed/27524644
https://doi.org/10.1056/NEJMp1413425
https://doi.org/10.1371/currents.outbreaks.23badd9821870a002fa86bef6893c01d
https://doi.org/10.1371/currents.outbreaks.23badd9821870a002fa86bef6893c01d
http://www.ncbi.nlm.nih.gov/pubmed/27974995
https://doi.org/10.1371/journal.pntd.0003567
http://www.ncbi.nlm.nih.gov/pubmed/25886400
https://doi.org/10.1016/S0140-6736(15)60858-3
http://www.ncbi.nlm.nih.gov/pubmed/25987157
https://doi.org/10.1038/515492b
http://www.ncbi.nlm.nih.gov/pubmed/25428491
https://doi.org/10.1098/rstb.2016.0302
https://doi.org/10.1098/rstb.2016.0302
http://www.ncbi.nlm.nih.gov/pubmed/28396473
https://doi.org/10.1371/journal.pone.0131398
http://www.ncbi.nlm.nih.gov/pubmed/26197242
https://doi.org/10.15585/mmwr.su6503a2
http://www.ncbi.nlm.nih.gov/pubmed/27389903
https://doi.org/10.1136/bmjgh-2019-002145
http://www.ncbi.nlm.nih.gov/pubmed/32830128
https://www.fda.gov/news-events/press-announcements/first-fda-approved-vaccine-prevention-ebola-virus-disease-marking-critical-milestone-public-health
https://www.fda.gov/news-events/press-announcements/first-fda-approved-vaccine-prevention-ebola-virus-disease-marking-critical-milestone-public-health
https://www.fda.gov/news-events/press-announcements/first-fda-approved-vaccine-prevention-ebola-virus-disease-marking-critical-milestone-public-health
https://www.fda.gov/vaccines-blood-biologics/ervebo
https://www.ema.europa.eu/en/medicines/human/EPAR/zabdeno
https://www.ema.europa.eu/en/medicines/human/EPAR/zabdeno
https://doi.org/10.1016/S0092-8240(05)80040-0
http://www.ncbi.nlm.nih.gov/pubmed/2059741
https://doi.org/10.1016/j.amc.2015.11.094
https://doi.org/10.1016/j.amc.2015.11.094
https://doi.org/10.1371/journal.pone.0257995
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