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Tissue-resident memory CD8+ T cells amplify
anti-tumor immunity by triggering antigen
spreading through dendritic cells
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Tissue-resident memory CD8+ T (Trm) cells mediate potent local innate and adaptive

immune responses and play a central role against solid tumors. However, whether Trm cells

cross-talk with dendritic cells (DCs) to support anti-tumor immunity remains unclear. Here

we show that antigen-specific activation of skin Trm cells leads to maturation and migration

to draining lymph nodes of cross-presenting dermal DCs. Tumor rejection mediated by Trm

cells triggers the spread of cytotoxic CD8+ T cell responses against tumor-derived neo- and

self-antigens via dermal DCs. These responses suppress the growth of intradermal tumors

and disseminated melanoma lacking the Trm cell-targeted epitope. Moreover, analysis of

RNA sequencing data from human melanoma tumors reveals that enrichment of a Trm cell

gene signature associates with DC activation and improved survival. This work unveils the

ability of Trm cells to amplify the breath of cytotoxic CD8+ T cell responses through DCs,

thereby strengthening anti-tumor immunity.
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Cytotoxic CD8+ T lymphocytes (CTL) play a pivotal role in
providing effective antigen-specific immunity against
tumors. Tumor-specific CTL responses are initiated at

secondary lymphoid organs when naïve CD8+ T cells are acti-
vated by mature migratory dendritic cells (DCs) presenting
tumor-derived antigens on MHC class I molecules1,2. Antigen-
specific CD8+ T cells massively proliferate and differentiate into
cytotoxic effector T (Teff) cells, which can then migrate to per-
ipheral tissues and recognize cancer cells through their T-cell
receptor (TCR). CTL destroy target tumor cells through
mechanisms including release of granules containing perforin and
granzymes and inducing FasL-mediated apoptosis. To achieve
long-lasting anti-tumor immunity, it is necessary to establish
memory CD8+ T-cell responses3,4. Classically, the circulating
memory compartment consists of central-memory (Tcm) and
effector-memory (Tem) CD8+ T cells5. Tcm cells circulate
between secondary lymphoid organs and blood, whereas Tem
cells circulate between blood and non-lymphoid tissues5. In
contrast to these circulating subsets, tissue-resident memory
CD8+ T (Trm) cells stably reside in lymphoid and non-lymphoid
tissues where they provide potent local innate and adaptive
immune responses6. The remarkable ability of Trm cells to
mediate protective immunity has prompted the development of
more potent vaccination strategies by eliciting Trm cells against
infectious diseases7,8. Evidence supporting a central role of Trm
cells in tumor immunosurveillance has recently emerged from
animal models9,10. We and others have demonstrated that
antigen-specific Trm cell responses mediate strong tissue-
restricted immunity against cutaneous melanoma and other
tumor models9,11–13. However, the precise mechanisms by which
Trm cells mediate enhanced anti-tumor immunity are poorly
understood.

In human cancers, infiltration of CD103+ CD8+ T cells in
solid tumors has been associated with longer survival in patients
with breast, lung, endometrial, ovarian, cervical, urothelial and
melanoma tumors14–23. Moreover, tumor-infiltration of Trm cells
was recently associated with improved survival in melanoma
patients that received an antibody blocking the inhibitory
receptor PD-123. T-cell residency across different tissues,
including tumors, is defined by a distinctive gene expression
program commanded by transcription factors, including Runx3,
Blimp1, Hobit and Nur7724–26. Tissue adaptation involves con-
stitutive upregulation of CD69, CD49a and CD103, which sustain
enhanced ability of Trm cells to become established in the tumor
niche and better suited to fight tumors. CD69 is a C-type lectin
expressed by Trm cells from most tissues that render these cells
unresponsive to tissue egress signals such as sphingosine-1-
phosphate (S1P) by reducing the levels of S1P receptor27. CD49a,
or α1β1 integrin, is an adhesion molecule that binds to the
extracellular matrix proteins collagen and laminin28 and distin-
guish Trm cells with higher cytotoxic potential in skin and
melanoma tumors29,30. Trm cells confined to epithelial barriers
also express CD103 (integrin αEβ7), which binds to E-cadherin
and facilitates their interaction with epithelial cells31. In CD8+

T cells isolated from lung tumors, CD103 molecules have been
shown to distribute preferentially near the immune synapse
formed with the target tumor cell and to facilitate cytotoxic
vesicle degranulation in an E-cadherin-dependent fashion32.
Thus, tissue adaptation-related features and enhanced cytotoxi-
city may contribute to the superior protective potential of Trm
cells in human solid cancers.

Complementary to their cytotoxic activity, Trm cells secrete
large amounts of effector molecules, most prominently IFN-γ and
TNF-α, which can activate other immune cells with anti-tumor
potential. In the context of viral infections, IFN-γ produced by
Trm cells triggers an innate-like alarm state characterized by the

production of chemokines and antimicrobial molecules in the
tissue and the recruitment of circulating memory CD8+

T cells33,34. In cancer, the presence of a tissue-resident gene
signature is associated with higher density and enhanced cyto-
toxicity of CTLs infiltrating lung and breast tumors16,35. In viral
models, Trm cell-derived IL-2 has been shown to promote
upregulation of granzyme B in NK cells36. Additionally, antigen-
specific activation of Trm cells leads to the production of TNF-α,
which promotes rapid DC maturation and up-regulation of the
lymph node homing chemokine receptor CCR736,37. However,
whether Trm cell activation in the tissue causes DC migration to
draining lymph nodes and the subsequent initiation of protective
CTL immune responses remains unknown. Particularly in the
context of the tumor microenvironment, the innate–like cap-
abilities of Trm cells and their potential cross-talk with DCs
remain largely unexplored. We hypothesized that Trm cells
cooperate with DCs to support anti-tumor immunity by initiating
secondary T-cell responses against tumor-derived antigens.

Here, we demonstrate that skin Trm cell activation promotes
maturation and trafficking to draining lymph nodes of migratory
dermal DCs. Trm cell-mediated melanoma rejection leads to the
spreading of circulating CTL responses against tumor-derived
neo- and self-antigens that protects against intradermal tumors
and disseminated melanoma lacking the Trm cell-targeted anti-
gen. Transcriptional analysis of human melanoma tumors reveals
that a Trm cell gene signature associates with DC activation and
improved survival. This work highlights the ability of Trm cells to
cross-talk with DCs and orchestrate the broadening of anti-tumor
CTL immunity.

Results
Trm cells trigger maturation and migration of dermal DCs. We
first aimed to study the potential interplay between Trm cells and
migratory DCs in the skin. To this end, we generated ovalbumin
(OVA)-specific skin Trm cells in mice using intradermal (i.d.)
vaccination. This was followed by administration of an anti-CD8
antibody during the memory phase of the response (>4 weeks
post vaccination), which efficiently deplete circulating CD8+

T cells (Supplementary Fig. 1a, b), including circulating memory
and effector OVA-specific CD8+ T cells in lymphoid and non-
lymphoid tissues, as previously shown11. Then, depletion-
resistant Trm cells (Fig. 1a) were specifically activated by i.d.
injection of the immunodominant OVA(257-264) peptide, readily
producing IFN-γ and TNF-α within the first 6 h (Fig. 1a, b).
Interestingly, we observed that skin XCR1+ conventional type 1
DCs (cDC1), also known as dermal DCs or DDCs (Fig. 1c)
upregulated CD80, CD86, MHC class II and IL-12 molecules 24 h
after Trm cell activation (Fig. 1d–g). These data indicate that Trm
cells induce maturation of dermal DCs, which are specialized in
antigen cross-presentation and priming of CD8+ T cells38. Then,
we analyzed the presence of skin migratory DCs in draining
lymph nodes based on the expression of high levels of MHC class
II, CD207 (langerin) and CCR7 (Fig. 2a). We observed a marked
accumulation of different migratory DC subsets at 24 and 48 h
after Trm cell activation, including dermal DCs, Langerhans cells
(LCs) and CD11b+ DCs (Fig. 2b). Among these subsets, dermal
DCs displayed upregulated expression of the maturation marker
CD86 (Fig. 2c). These results indicate that antigen-specific acti-
vation of Trm cells triggers maturation and migration to draining
lymph nodes of skin-derived dermal DCs, revealing a cross-talk
among these cells.

Trm cells spread CTL responses against tumor neo-antigens.
Given the ability of Trm cells to activate migratory skin DCs
and also mediate tumor-cell killing11,36, we hypothesized that
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antigen-specific Trm cell-mediated tumor rejection would lead to
the generation of secondary responses against other tumor-
derived antigens, a phenomenon known as antigen spreading. To
test this, mice bearing OVA-specific Trm cells were depleted from
circulating CD8+ T cells and let during 8 weeks to replenish this
compartment (Supplementary Fig. 1c). This allows resetting the
endogenous repertoire in terms of specificity while maintaining
OVA-specific Trm cells in the skin. Then, mice were challenged

i.d. with MC38 cells expressing the OVA(257-264) peptide (MC38-
OTI), which were rejected by OVA-specific Trm cells. As con-
trols, unvaccinated mice (no Trm) challenged with MC38-OTI
and Trm cell-bearing mice challenged with parental MC38 were
used. Secondary CD8+ T-cell responses raised against highly
relevant neo-epitopes present in MC38 cell line39 were analyzed
12 days later in tumor-draining lymph nodes (Fig. 3a). To this
end, lymph node cells were ex vivo stimulated with neo-epitopes
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carrying missense mutations MUT 1 (SIIVFNLL from Dpagt1
gene), MUT 2 (AQLANDVVL from Reps1 gene) and MUT 3
(ASMTNMELM from Adpgk gene) and the production of effector
molecules was analyzed by intracellular staining and flow cyto-
metry. In contrast to control groups, rejection of MC38-OTI
mediated by OVA-specific Trm cells resulted in the expansion of
CD8+ T cells specific to all neo-epitopes tested (Fig. 3b, c),
detected as IFN-γ-producing CD8+ T cells, which also expressed
high levels of CD44 (Fig. 3d). These results indicate that
spreading of CD8+ T-cell responses to multiple antigens is trig-
gered by Trm cell-mediated tumor rejection. Neo-epitope-specific
CD8+ T cells displayed high expression of other effector mole-
cules, such as TNF-α, granzyme B and IL-2 (Fig. 3e, g), which is
consistent with anti-tumor cytotoxic activity. Indeed, these mice
were able to reject a re-challenge with MC38 cells, which express
the neo-epitopes but cannot be recognized by OVA-specific Trm
cells (Fig. 3h-k).

Trm cells promote melanoma-antigen spreading through DCs.
To confirm these results in a relevant metastatic melanoma
model, we used B16F10 cells, which are less immunogenic and
express melanocyte-associated self-antigens, such as gp100.
Favorably, responses against H-2 Kb-restricted gp100(25-33) pep-
tide can be tracked by transferring congenic TCR-transgenic
CD8+ T cells from pmel-1 mice without the need to wait for the
replenishment of the endogenous repertoire. Mice bearing OVA-
specific Trm cells and devoid of circulating CD8+ T cells received
i.v. transfer of pmel-1 CD8+ T cells (Fig. 4a). The following day,
mice were challenged i.d. with B16F10 cells expressing the
OVA(257-264) peptide (B16F10-OTI), which are rejected by OVA-
specific Trm cells, as previously shown by us11. After 12 days, the
generation of gp100-specific CTL responses was analyzed in the
draining lymph nodes. Control groups were either left unchal-
lenged (CTRL) or challenged with B16F10 parental cell line that
do not activate OVA-specific Trm cells. As compared to control
groups, only mice challenged with B16F10-OTI presented a sig-
nificant expansion of gp100-specific CD8+ T cells (Fig. 4b, c),
which produced IFN-γ after ex vivo peptide stimulation and
displayed high expression of CD44 (Fig. 4d), indicating that they
were efficiently primed. Since both B16F10-OTI and B16F10 cells
express gp100 but only B16F10-OTI can be recognized by OVA-
specific Trm cells, these results suggest that melanoma recogni-
tion by Trm cells triggers the spreading of CD8+ T-cell responses
to tumor-derived antigens.

To explore whether cross-presenting dermal DCs mediate
antigen spreading, we carried out similar experiments using
Langerin-DTR mice, which allow the selective depletion of CD207/
langerin+ dermal DCs and LCs from the skin after diphtheria
toxin (DTx) administration40–42. Taking advantage of the
relatively faster repopulation of dermal DCs (~2 weeks) derived
from bone marrow precursors, in comparison to LCs (>4 weeks)
that arise from slowly proliferating skin precursors, we performed
the B16F10-OTI challenge in mice devoid of only LCs (single DTx

administration two weeks before challenge) or depleted of both
LCs and dermal DCs (continuous DTx administration starting one
day before challenge) (Supplementary Fig. 2)43,44. Similar to wild-
type mice, pmel-1 CD8+ T cells were clonally expanded following
B16F10-OTI challenge in Langerin-DTR mice that were not
treated with DTx (No DTx; DDC+/LC+) or received a single DTx
dose (Single DTx; DDC+/LC-) (Fig. 4e, f). Interestingly, the
expansion of pmel-1 CD8+ T cells was severely reduced in the case
of mice depleted of both dermal DCs and LCs by continuous
DTx administration (Continuous DTx; DDC- LC-), indicating
that dermal DCs are necessary for antigen spreading induced
by Trm cells. If dermal DCs directly present tumor-derived
antigens to naïve CD8+ T cells in the lymph nodes remain to be
determined.

Trm cell-induced CTL spreading suppresses melanoma growth.
We next determined whether secondary CD8+ T-cell responses
triggered by Trm cells were able to protect against B16F10 mel-
anoma cells lacking OVA antigen and cannot be recognized by
vaccination-induced Trm cells11. To this end, mice that rejected
B16F10-OTI cells were injected 2–3 weeks later in the opposite
flank with B16F10 melanoma cells (re-challenge) (Fig. 5a).
Interestingly, these mice suppressed the growth of cutaneous
tumors as compared to control mice that did not receive initial
B16F10-OTI challenge (Fig. 5b,c), and therefore did not prime
gp100-specific pmel-1 CD8+ T cells. In addition, no protection
against B16F10 re-challenge was observed in mice that rejected
B16F10-OTI melanoma but that did not receive transfer of pmel-
1 CD8+ T cells (Fig. 5b, c), directly implicating the participation
of primed pmel-1 CD8+ T cells in the anti-tumor effects
observed. These results imply that Trm cell-mediated melanoma
rejection triggers the spreading of CD8+ T-cell responses against
melanoma-associated antigens, providing cross-protection
against melanoma lacking Trm cell-targeted antigen. This can
potentially be important to control highly heterogeneous tumors
containing antigen-loss escape mutants.

To address the potential of Trm cell-induced gp100-specific
CTL responses to protect against tumors disseminated in distant
tissues, we repeated the previous experiment but substituted i.d.
for i.v. B16F10 re-challenge to form disseminated pulmonary
melanoma foci. Similar to i.d. re-challenge experiments, we
observed that gp100-specific CTLs educated upon Trm cell-
mediated melanoma rejection suppressed the formation of
melanoma foci, as compared to unchallenged or non-
transferred controls (Fig. 5d). These data suggest that Trm cells
can orchestrate the generation of systemic CTL responses, which
have the potential to protect against metastatic tumors.

Trm cell-DC cross-talk in human melanoma. Finally, we set out
to determine whether there is evidence of cross-talk between Trm
cells and DCs in human cancer. Using previously described gene
signatures for Trm cells, activated and immature DCs35,45, we

Fig. 1 Skin Trm cell activation induces maturation of dermal DCs. C57BL/6 mice bearing OVA-specific skin Trm cells and depleted of circulating CD8+

T cells by administration of an anti-CD8 antibody were intradermally inoculated with control (CTRL) or OVA(257-264) (OVA) peptides to activate Trm cells.
a, b OVA-specific CD45.1+ CD8+ T cells in the skin were analyzed 6 h later by intracellular cytokine staining and flow cytometry. a Representative
pseudocolor dot-plot showing CD69 and CD103 expression. b Representative pseudocolor dot-plots and graph showing IFN-γ and TNF-α production by
skin Trm cells. c–g DCs in the skin were analyzed 24 h after peptide stimulation. c Gating strategy used to identify skin DC subpopulations, including
CD11b+ DCs, Langerhans cells (LC) and dermal DCs (DDC) and representative histograms showing XCR1 expression in each subset. d–g Representative
histograms (black: CTRL; red: OVA) and graphs showing of the expression of CD80, CD86, MHCII and IL-12 of each skin DC subset. For quantification, the
geometric mean fluorescence intensity (MFI) was normalized relative to the average of the control group. Pooled data from two independent experiments,
n= 7 mice in the group treated with control peptide and n= 8 mice in the group stimulated with OVA(257-264) peptide. Bars are the mean ± SEM. *p < 0.05,
**p < 0.01, ***p < 0.001 by Mann-Whitney unpaired test
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analyzed tumor transcriptomic data of patients with cutaneous
melanoma available within The Cancer Genome Atlas46,47. We
found a striking correlation between Trm cell and activated DC
signatures (r= 0.862), with a weaker correlation between Trm cells
and immature DCs (r= 0.446; Fig. 6a). This is in keeping with our
finding that Trm cells promote DCmaturation in mice and suggests
a similar process may occur in human melanoma. Whilst both Trm
and activated DC enrichment correlated with better overall survival,

this association was weaker for immature DCs (Fig. 6b). As these
signatures are correlated, we carried out multivariable Cox regres-
sion analysis to estimate their individual contributions to patient
survival, additionally correcting for total T-cell infiltrate using a
previously published signature48 and stage, showing Trm cell
enrichment to remain a strong predictor of survival (Fig. 6c). These
results suggest that that a similar Trm cell-DC cross-talk may occur
in human melanoma.
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Discussion
There is compelling evidence supporting a central role for Trm
cells in anti-tumor immunity. However, the precise mechanisms
by which Trm cells can control solid tumors are just starting to be
deciphered. Here we show that, in parallel to their well-

documented direct tumor killing capability49, Trm cells can
activate cross-presenting dermal DCs, resulting in the subsequent
priming and expansion of new CD8+ T cells specific to tumor-
derived neo- and self-antigens. Importantly, this secondary
response confers protection against re-challenge with tumor cells
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Fig. 3 Trm cell-mediated tumor rejection spread CTL responses against neo-antigens. a–g C57BL/6 mice bearing OVA-specific skin Trm cells were
depleted of circulating CD8+ T cells by administration of an anti-CD8 antibody. Eight weeks later, mice were challenged intradermally with MC38 (n= 6)
or MC38-OTI (n= 8) cells. A group of unvaccinated mice (No Trm) was challenged with MC38-OTI cells (n= 9) as additional control. b–g Expression of
IFN-γ, CD44, TNF-α, granzyme B and IL-2 was analyzed 12 days after tumor challenge in CD8+ T cells present in draining lymph nodes after ex vivo
stimulation with control (CTRL) or neo-epitope peptides (MUT 1, MUT 2 and MUT 3) followed by intracellular cytokine staining. a Experimental timeline
scheme. b Representative pseudocolor dot-plots showing IFN-γ and TNF-α production from a mouse challenged with MC38 (upper panels) and MC38-OTI
(lower panels). c Graph showing the frequencies of IFN-γ-producing CD8+ T cells. d–g Representative histograms (black histograms: IFN-γ- CD8+ T cells;
red histograms: IFN-γ+ CD8+ T cells) and graphs (black bars: IFN-γ- CD8+ T cells; colored bars: IFN-γ+ CD8+ T cells) showing the expression of CD44
(d), TNF-α (e), granzyme B (f), and IL-2 (g). For quantification, the geometric mean fluorescence intensity (MFI) was normalized relative to the average of
IFN-γ- CD8+ T cells. h-j Mice bearing OVA-specific Trm cells that rejected MC38-OTI cells, were re-challenged with MC38 cells (MC38-OTI, n= 4) and
tumor growth was monitored. Mice that did not received initial challenge (No challenge, n= 4) were used as controls. h Experimental timeline scheme.
i Individual curves showing tumor growth. j Graphs showing the mean of tumor volume. Bars are the mean ± SEM. ***p≤ 0.001, ****p≤ 0.0001 by Mann-
Whitney unpaired test for c, e–g and two-way ANOVA Bonferroni post-hoc test for j
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lacking the antigen initially recognized by Trm cells. To our
knowledge, this is the first study to show that Trm cells can
orchestrate the broadening of circulating CTL responses via DCs
to strengthen protective immunity. Interestingly, these secondary
CTL responses were able to suppress the growth of cutaneous

tumors and also disseminated melanoma in the lungs. The ability
of Trm cells to trigger the generation of broader and systemic
CTL responses to control disseminated tumors implies that they
can overcome their tissue-restricted nature, spreading their pro-
tective potential to other organs. This notion is supported by our
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findings in human data indicating that a Trm cell gene signature
positively correlates with overall survival.

This reverse flow of information from adaptive to innate
immune responses was initially described during anti-viral
immune responses. A few reports have demonstrated that fol-
lowing Trm cell activation, a strong innate-like alarm state is
induced in the tissue through the production of a plethora of
effector molecules33. Among these, TNF-α has been shown to
promote maturation of DCs36. However, whether Trm cell-
induced DC maturation results in the generation of new CD8+ T-
cell responses had not previously been addressed. The present
study reveals that such cross-talk between Trm cells and DCs
occurs in the context of anti-tumor immunity and, more
importantly, that it results in the propagation of circulating anti-
tumor CTL responses.

The results obtained in mouse models are supported by
human data showing a strong correlation between Trm cell and
activated DC gene signatures in tumors from melanoma
patients. The broader anti-tumor CTL responses triggered by
Trm cells can eventually underlie the association between Trm
cell infiltration and higher density of CTLs observed in some

human solid tumors16,35, as well as the superior predictive
potential and better response to immunotherapy that Trm cells
have in comparison to total CD8+ T-cell infiltration16. This
mechanism may have broader implications because Trm cell-
infiltration has been shown to predict better clinical outcome
in other types of solid tumors14–23. On the other hand, cross-
presenting migratory DCs are key players in the generation of
anti-tumor T-cell immunity and their absence abolishes
the rejection of immunogenic tumors and decreases the
response to immune checkpoint blockade and adoptive T-cell
therapy1,50–52.

Emerging evidence indicates that effective anti-tumor immu-
nity requires the coordinated action of tissue-resident and cir-
culating T-cell compartments12,53,54. However, how these two
compartments team-up to control tumors is poorly understood. It
has been previously demonstrated that virus-specific Trm cells
can recruit circulating bystander memory CD8+ T cells to the
infection site after antigen recognition through the production of
IFN-γ33. In tumor models, circulating Tcm cells have been shown
to differentiate into Trm cells12. Here we show that Trm cells can
increase the breadth of the circulating CD8+ T-cell repertoire.
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Our findings suggest a novel mechanism by which resident and
circulating T cells can collaborate to fight tumors.

The mechanism described in this manuscript could be of
particular relevance to control highly heterogeneous tumors,
which represents a major challenge to oncological treatments and,
in particular, immunotherapies. Indeed, tumor-cell exon
sequencing has revealed that multiple regions inside the same
tumor or different lesions in the same patient have divergent
mutation patterns55,56 and probably a differential expression of
antigens. Consequently, Trm cells derived from different metas-
tasis of the same patient have a high interlesional TCR diversity57.
On the other hand, the adaptive immune system exerts a selective
pressure on tumor cells, driving the survival of more resistant
cancer cell subpopulations, a phenomenon known as immune
editing58. As a result, cancer cell clones that do not express
immune targeted antigens can escape immune control and form
new tumors58. In this regard, Trm cell responses can drive the

control of resistant clones, such as antigen-loss escape mutants,
by broadening anti-tumor CTL responses against multiple tumor-
derived antigens, as shown here.

In summary, we propose that Trm cells represent a new
orchestrator of anti-tumor immunity. Interestingly, it has been
suggested that Trm cells are major targets of checkpoint block-
ade57 and that checkpoint blockade promotes Trm cell formation
in tumors12. Hence, we envision that the ability of Trm cells to
increase the breath of anti-tumor T-cell immunity via DCs may
play an important role in cancer immunotherapy. Accordingly,
recent studies have evidenced the importance of the cross-talk
between DCs and CD8+ T cells for effective cancer immu-
notherapy59. Moreover, a recent study has revealed that PD-1
blockade leads to the expansion of new tumor-reactive T-cell
clones in patients with advanced skin cancer60. In consequence,
the development of therapeutic approaches, such as vaccines, T-
cell-based therapies and monoclonal antibodies, that boost the
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ability of Trm cells to broaden anti-tumor CTL immunity are
expected to have a greater protective potential in cancer, parti-
cularly to control highly heterogeneous tumors and metastatic
disease.

Methods
Animals. C57BL/6/J wild-type (CD45.2), B6.Cg-Thy1a/Cy Tg(TcraTcrb)8Rest/J
(pmel-1), C57BL/6-Tg(TcraTcrb)1100Mjb/J (OT-I), CBy.SJL(B6)-Ptprca/J
(CD45.1), B6.129S2-Cd207tm3(DTR/GFP)Mal/J (Langerin-DTR) mice were purchased
from Jackson Laboratories, kept at the animal facility of Fundación Ciencia & Vida
and maintained according to the “Guide to Care and Use of Experimental Animals,
Canadian Council on Animal Care”. This study was carried out in accordance with
the recommendations of the “Guidelines for the welfare and use of animals in
cancer research, Committee of the National Cancer Research Institute”. All pro-
cedures complied with all relevant ethical regulations for animal research and were
approved by the “Committee of Bioethics and Biosafety” of Fundación Ciencia &
Vida. Blinding or randomization strategies were done whenever it was possible, no
animals were excluded from the analysis and male and female mice were used
indistinctly. Mice were allocated randomly in the different experimental
procedures.

Intravenous transfer of CD8+ T cells. Naïve CD45.1+ OTI and CD90.1+ pmel-1
TCR-transgenic CD8+ T cells were purified from secondary lymphoid organs of
transgenic mice using the EasySep Mouse CD8+ T-Cell Enrichment Kit (StemCell
Technologies, ref 19853). Mice were intravenously injected with 2.0-2.5 × 105 cells
in 100 µL of sterile PBS (ThermoFisher Scienfic, ref 10010023).

Immunizations. One day after intravenous transfer of OTI CD8+ T cells, mice
were intradermally immunized in the lower back skin with 40 µg of pVAX plasmid
encoding a membrane bound form of chicken OVA (pOVA). Immediately, DNA
electroporation was performed by placing a parallel needle array electrode (two
rows of four 2 mm pins, 1.5 × 4 mm gaps; 47-0040, BTX electroporation systems)
over the injected blebs to deliver the electric pulses (two 1125 V/cm, 0.05 ms pulses
followed by eight 275 V/cm, 10 ms pulses) using the AgilePulse In Vivo System
(BTX Molecular Delivery Systems, ref 47–0400N). Plasmids were purified using the
NucleoBond PC10000 EF (Macherey-Nagel, ref 740548) or the NucleoBond
XtraMidi EF (Macherey-Nagel, ref 740420.50).

CD8+ T-cell depletion. At least 4 weeks after vaccination, mice were intraper-
itoneally injected with three doses of 20 µg of rat monoclonal anti-CD8 antibody
(BioXCell, clone YTS169.4, ref BE0117) in consecutive days.

Preparation of tissue cell suspensions. Inguinal lymph nodes were mechanically
disaggregated and digested in 1 mL non-supplemented RPMI 1640 medium
(ThermoFisher Scientific, ref 61870-036) containing 5 mg/mL of collagenase type
IV (Gibco, ref 17104019) and 5 µg/mL of DNAse I (AppliChem, ref A3778,0010)
for 30 min at 37 °C. Single-cell suspension was obtained using a 70 μm cell strainer
(BD Falcon, ref 352350). For skin preparations, vaccinated skin was excised, cut in
small fragments and digested in 1 mL non-supplemented RPMI 1640 medium
(ThermoFisher Scientific, ref 61870-036) containing 5 mg/mL of collagenase type
IV (Gibco, ref 17104019) and 5 µg/mL of DNAse I (AppliChem, ref A3778,0010)
for 30 min at 37 °C, skin pieces were then disaggregated mechanically using
microscope slides with ground edges (Sail Brand, ref 7105) and single-cell sus-
pension was obtained using a 70 μm cell strainer (BD Falcon, ref 352350) followed
by a second digestion with 1 mL of supplemented of RPMI 1640 medium con-
taining 5 µg/mL of DNAse I (AppliChem, ref A3778,0010) during 5 min on ice.

Flow cytometry staining. Cells were incubated 10 min with the TruStain fcX
(clone 93) washed and incubated with the antibodies during 20 minutes followed
by two washes with PBS. Monoclonal antibodies specific for mouse molecules were
purchased from Biolegend: CD3-FITC (clone 17A2), CD3-APC (clone 17A2),
CD3-PerCp/Cy5.5 (clone 17A2), CD8-Brillant Violet 421 (clone 53-6.7), CD45-PE
(clone 30-F11), CD45-PerCP(clone 30-F11), CD45.1-PE/Cy7 (clone A20), CD45.1-
FITC (clone A20), CD103-APC (clone 2E7), CD103-PerCP (clone 2E7), CD69-
APC/Cy7 (clone H1.2F3), CD69-APC (clone H1.2F3), CD44-PerCP (clone IM7),
IFN-γ-PE (clone XMG1.2), IFN-γ-APC (clone XMG1.2), TNF-α-APC/Cy7 (clone
MP6-XT22), CD11b-FITC (clone M1/70), CD207-PE (clone 4C7), XCR1-APC
(clone ZET), XCR1-PerCP-Cy5.5 (clone ZET), CD11c-PE/Cy7 (clone N418),
MHCII-APC/Cy7 (clone M5/114.15.2), CD24-PerCP-Cy5.5 (clone M1/69), CD80-
APC (clone 16-10A1), CD80-PE/Cy7 (clone 16-10A1), CD86 Brilliant Violet 421
(clone GL-1), CCR7-PE/Cy7 (clone 4B12), IL-2-PE/Cy7 (clone JES6-5H4) IL-12/
23-APC (clone C15.6), granzyme B-APC (clone GB11) and viability dye Zombie
Aqua (ref 423101). Samples were acquired in a FACSCanto II cytometer (BD
Bioscience) and data were analyzed using FlowJo version X.0.7 (Tree Star, Inc.).
Gating strategies for all flow cytometry experiments are shown in Supplementary
Fig. 4.

Ex vivo intracellular cytokine staining. Inguinal lymph nodes were obtained
12 days after the tumor challenge and CD8+ T cells were stimulated ex vivo with
the gp100(25-33) peptide (KVPRNQDWL, synthesized at Genscript) for 8 h. Bre-
feldin A (1 µg/mL, Sigma–Aldrich, ref B6542) was added during the last 6 h. In the
case of neo-epitopes MUT1 (SIIVFNLL), MUT2 (AQLANDVVL) and MUT3
(ASMTNELM), stimulation was carried out during 20 h. Brefeldin A (1 µg/mL,
Sigma–Aldrich, ref B6542) was added during the last 4 h. Intracellular staining was
performed using the Cytofix/Cytoperm Fixation/Permeabilization solution set (BD
Biosciences, ref 554714) according to the manufacturer’s instructions.

In vivo Trm cell stimulation and intracellular cytokine staining. OVA-specific
Trm cells were stimulated by intradermal injection with 20 µg of OVA(257-264)

peptide (SIINFEKL) or control SURV20-28 peptide (ATFKNWPFL) diluted in PBS
near to the vaccination site. Mice were sacrificed 6, 24 or 48 h later and lymph
nodes and skin were analyzed as described above. In the case of intracellular
cytokine staining of skin Trm cells, 20 µg of brefeldin A was co-injected with the
peptides. In the case of intracellular IL-12 staining of skin DCs, brefeldin A was
injected after 24 h and analysis was performed 4 h later.

Diphteria toxin administration. To deplete langerin-expressing DCs, Langerin-
DTR mice received 1 µg of diphtheria toxin (Sigma–Aldrich, ref D0564 1MG) by
intravenous injection in the tail vein. In the experiments where DC depletion was
continuously maintained, mice received 0.35 µg of diphtheria toxin intraper-
itoneally every 3 days.

Cell lines. Mouse melanoma cell line B16F10 (ATCC CLR-6475) was obtained
from American Type Culture Collection. MC38 tumor cells were kindly provided
by Dr. Burkhard Becher (University of Zurich, Switzerland) to Dr. Sergio A.
Quezada. B16F10-OTIx5-ZsGreen (B16F10-OTI) and MC38-OTIx5-ZsGreen
(MC38-OTI) cells were generated by lentiviral transduction of B16F10 cell line
with the pLVX-OTIx5-ZsGreen vector encoding the OTI epitope minigene fused to
ZsGreen11. B16F10 and MC-38 cell lines were cultured in complete RPMI 1640
(ThermoFisher Scientific, ref 61870-036) and DMEM (HyClone, ref SH30081.02)
media, respectively, supplemented with penicillin, streptomycin (ThermoFisher
Scientific, ref 15140122), non-essential amino acids (ThermoFisher Scientific, ref
11140050), sodium pyruvate (ThermoFisher Scientific, ref 11360070) and 10% of
heat-inactivated fetal bovine serum (ThermoFisher Scientific, ref 10437010) in a
humidified incubator at 37 °C with 5% CO2. All cell lines were routinely tested for
mycoplasm contamination.

Tumor challenge. Mice were injected intradermally in the lower back skin close to
the vaccination site with 50 μL of PBS containing 1 × 106 of tumor cells. Tumor
growth was monitored by measuring perpendicular tumor diameters with calipers.
Tumor volume was calculated using the following formula: V= (D x d2)/2 where V
is the volume (mm3), D is larger diameter (mm) and d is smaller diameter (mm).
Mice were sacrificed when moribund or when the mean tumor diameter was ≥15
mm,) according to the approved ethical protocol. When indicated, mice were re-
challenged with 1 × 106 B16F10 or MC38 cells in the contralateral site. For intra-
venous re-challenge 1 × 106 of B16F10 melanoma cells in 200 ul of PBS were
inoculated through the tail vein. Mice were sacrificed two weeks later and lungs
were obtained, washed in PBS and stored in 3 mL of Fekete´s solution. Lung foci
quantification was performed taking pictures of the lungs on both sides (Canon
EOS rebel T5) followed by quantification of dark melanoma foci.

RNA sequencing analysis. Upper quartile normalized RSEM expected RNA
transcript counts and clinical data47 from The Cancer Genome Atlas (TCGA)
project were downloaded from the National Cancer Institute GDC PanCanAtlas
project website (https://gdc.cancer.gov/about-data/publications/pancanatlas) and
cutaneous melanoma cases (SKCM) filtered. Trm cell and DC gene signatures were
previously described by Charoetntong et al. and Savas et al.35,45. A tumor-
infiltrating T-cell signature was used as previously described by Danaher et al.48.
Non-protein coding genes were removed from these signatures for consistency
with TCGA data. For each signature, enrichment scores were calculated by taking
the mean log10+ 1 normalized expression of each gene, followed by z-score
transformation. The correlation between Trm cell and DC gene signatures was
evaluated by Pearson correlation.

Statistical analysis. Statistical analysis was performed using Graphpad Prism
software (Graphpad Software Inc.). RNA sequencing and survival analyses were
carried out in the R statistical programming environment. Mann-Whitney
unpaired tests were performed between relevant groups. Statistical analyses for
tumor growth was performed using two-way ANOVA Bonferroni post-hoc test.
Error bars in figures indicate the mean plus SEM. Survival analysis by Cox
regression was carried out with the “survival” package and Kaplan-Meier survival
curves were drawn using the “survminer” package with patients grouped on the
median value of each variable tested and with log-rank p values reported. Overall p
value <0.05 was considered statistically significant; *p ≤ 0.05, **p ≤ 0.01, ***p ≤
0.001 and ****p ≤ 0.0001.
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Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the authors on
reasonable request.
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