Cross-talk between T-cells and gut-microbiota in neurodegenerative disorders

The emerging role of gut microbiota as a key player in the development of neurodegenerative disorders: Mammals have evolved together with commensal microbiota to establish a symbiotic relationship in which they regulate reciprocally by synthesizing and responding to specific chemical substances. In this regard, gut microbiota constitutes a consortium of bacteria that not only participates in the degradation of nutrients, but also produces metabolites, fatty acids and neurotransmitters that can act on the enzymes and receptors expressed in eukaryotic cells, which considerably affects the physiology of the host, maintaining homeostasis (Lyte, 2013).

According to the important role that gut-microbiota plays in maintaining homeostasis, alterations in the composition of gut-microbiota (dysbiosis) have consistently been involved in the development of neuropsychiatric, metabolic, autoimmune and neurodegenerative disorders, with respect to this last point, human and animal studies have shown that the presence of some precise bacteria or the absence of some beneficial components in the gut microbiota of genetically susceptible individuals could trigger the development of Parkinson’s disease (PD), Alzheimer’s disease (AD), multiple sclerosis (MS) or amyotrophic lateral sclerosis (ALS). For instance, an increase of Proteus mirabilis in the composition of gut microbiota and excess production of short-chain fatty acids in the intestinal mucosa have been shown to promote the development of PD in several animal models (Sampson et al., 2016; Choi et al., 2018). On the other hand, it has been demonstrated that butyrate producing bacteria, Butyry vibrio Fibrisolvens, was selectively decreased in the intestinal microbiota of animals genetically susceptible to ALS, and the administration of butyrate significantly attenuated the disease development (Zhang et al., 2017).

Noteworthy, in a study conducted with 34 pairs of discordant twins for MS, the results show that the composition of the intestinal microbiota from healthy twins was different from that obtained from twins with MS (Berer et al., 2017). Furthermore, using a mouse model of MS that develop the disease spontaneously in a specific-pathogen-free environment, the experiment showed that the mice developed a severer MS that develop the disease spontaneously in a specific-pathogen-free environment, the experiment showed that the mice developed a severer MS (Berer et al., 2017). Interestingly, CD4+ T-cell deficient animals are resistant to the development of PD, AD and MS, whilst animals devoid of T-cells develop an exacerbated disease manifestation in ALS models (Gonzalez et al., 2015). Furthermore, recent studies have shown the involvement of autoreactive CD4+ T-cells specific to β-synuclein or to β-synuclein in PD and MS patients, respectively (Sulzer et al., 2017; Lodygin et al., 2019). Thereby, increasing evidence indicates that an autoimmune response mediated by Th1 and Th17 lymphocytes plays a critical role in neurodegeneration of neurodegenerative disorders. At this point, it is important to note that regulatory CD4+ T-cells (Treg), which have the ability to inhibit the inflammatory reaction exerted by Th1 and Th17 cells, become key roles of attenuating neuroinflammation and neurodegeneration.

CD4+ T-cells as mediators between dysbiosis and the development of neurodegeneration: Emerging evidence has indicated that short-chain fatty acids, including acetate, propionate, butyrate and pentanoate, can modulate responses mediated by regulatory CD4+ T-cells, characterizing this cell population by the production of short-chain fatty acids in the intestinal mucosa have been shown to be an anti-inflammatory signal for CD4+ T-cells, attenuating the production of pro-inflammatory phenotypes, including Th1 and Th17 responses and favouring Treg activity (Gonzalez et al., 2015). Importantly, it has been suggested that autoreactive CD4+ T-cells could be activated in the gut either by encountering their cognate antigens in the gut-associated lymphoid tissues in an inflammatory context or by molecular mimicry. For instance, CD4+ T-cells specific for interphotoreceptor retinoid binding protein (IRBP)-induced autoreactive CD4+ T-cells have been shown to be activated in the gut and differentiate in the inflammatory Th17 phenotype in a microbiota-dependent manner, even in interphotoreceptor retinoid binding protein-deficient mice (Horai et al., 2015). Furthermore, studies have shown the generation of pathogenic forms of α-synuclein in the gut mucosa, which is associated with intestinal inflammation in early stages of PD, even before motor deterioration in patients and animal models (Campos-Acuna et al., 2019). Therefore, considering all these findings together, it is tempting to hypothesize that autoreactive T-cells involved in neurodegenerative disorders would be activated in gut-associated lymphoid tissues and a pathologic composition of intestinal microbiota would promote the activation of inflammatory phenotypes in these cells, such as Th1 and Th17. Subsequently, autoreactive Th1 and Th17 lymphocytes would promote neuroinflammation and neurodegeneration associated with the corresponding pathology (Figure 1). Thus, validating or refute this hypothesis, future studies are acquiring causal evidence demonstrating the interdependence between the composition of the gut microbiota, the activation of autoreactive CD4+ T-cells and neurodegeneration in animal models of AD, PD, MS and ALS. Moreover, the alteration of dysbiosis and expansion of autoreactive populations of CD4+ T-cells in patients suffering from these neurodegenerative disorders would also be key evidence. These kinds of studies would help to answer key pending questions in this area, including: i) Are autoreactive T-cells involved in neurodegeneration activated in the gut? ii) Is the pro-inflammatory phenotype of autoreactive T-cells involved in neurodegeneration induced by the altered intestinal microbiota? iii) Is the activation of these autoreactive T-cells...
induced by some components of the gut microbiota with molecular mimicry with CNS antigens? iv) Are the CNS-derived antigens delivered into the gut-associated lymphoid tissues to be presented to T-cells? In addition, these studies would help to decipher the code of “beneficial” and “detrimental” bacteria, considering as early therapeutic targets in genetically susceptible individuals. The future validation of the cross-talk of gut microbiota with autoreactive T-cells in the development of neurodegenerative disorders can also potentially show early biomarkers of these pathologies, including the presence of “detrimental” bacteria or the absence of “beneficial” bacteria in the gut microbiota, the presence of pathogenic protein inclusions (i.e., α-synuclein fibrils) in the intestinal mucosa, or the presence of T-cells reactive to CNS self-constituents in peripheral blood.

This work was supported by Programa de Apoyo a Centros con Financiamiento Basal AFB-170004 (to Fundación Ciencia & Vida) from “Comisión Nacional de Investigación Científica y Tecnológica de Chile (CONICYT)” and by grants FONDECYT-1170093 from Fondo Nacional de Desarrollo Científico y Tecnológico de Chile, MJFF-10332.01 and MJFF-15076 from Michael J. Fox Foundation for Parkinson Research.

Rodrigo Pacheco*
Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Ñuñoa, Santiago, Chile

*Correspondence to: Rodrigo Pacheco, PhD, rpacheco@cienciavida.org or rodrigo.pacheco@unab.cl.

orcid: 0000-0001-8057-9806 (Rodrigo Pacheco)

Received: April 29, 2019
Accepted: June 11, 2019
doi: 10.4103/1673-5374.262582

Copyright license agreement: The Copyright License Agreement has been signed by the author before publication.

Plagiarism check: Checked twice by iThenticate.

Peer review: Externally peer reviewed.

Open access statement: This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Open peer reviewer: T. Bucky Jones, Midwestern University, USA.

Additional file: Open peer review report 1.

Figure 1 CD4+ T-cell response as a major mediator in the cross-talk between gut microbiota and neurodegeneration.

In homeostasis, the mixture of molecular cues produced by healthy microbiota promotes the differentiation of naive autoreactive CD4+ T-cells in Treg cells, thus promoting tolerance to self-constituents and neuroprotection. Conversely, upon dysbiosis, the consequent alteration in the composition of molecular cues that affect CD4+ T-cells would displace the differentiation of autoreactive naive CD4+ T-cells towards the inflammatory phenotypes Th1 and Th17. Subsequently, autoreactive Th1 and Th17 cells would infiltrate the brain and promote neuroinflammation and neurodegeneration. Pro-inflammatory lymphocytes promoting neurodegeneration are indicated in blue. Different colours of bacteria and molecular signals are used to represent diversity. CNS: Central nervous system; GABA: γ-aminobutyric acid.

References

P-Reviewer: Jones TB; C-Editors: Zhao M, Li YJ; T-Editor: Jia Y