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Extremely acidic environments have global distribution and can

have natural or, increasingly, anthropogenic origins. Extreme

acidophiles grow optimally at pH 3 or less, have multiple

strategies for tolerating stresses that accompany high levels of

acidity and are scattered in all three domains of the tree of life.

Metagenomic studies have expanded knowledge of the

diversity of extreme acidophile communities, their ecological

networks and their metabolic potentials, both confirmed and

inferred. High resolution compositional and functional profiling

of these microbiomes have begun to reveal spatial diversity

patterns at global, regional, local, zonal and micro-scales.

Future integration of genomic and other meta-omic data will

offer new opportunities to utilize acidic microbiomes and to

engineer beneficial interactions within them in biotechnologies.
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Introduction: extremely acidic environments,
origins and diversities
Acidic environments with pH values of <5 (e.g. soils and

some water bodies) are widely distributed in the litho-

sphere. However, extremely acidic (pH < 3) environ-

ments are far less common. These may be natural or

anthropogenic (man-made) ecosystems, and are mostly

associated with the biogenic formation and accumulation

of sulfuric acid [1,2�]. Sulfur is one of the most abundant

elements in planet Earth, and can occur in any one of its

nine oxidation states, most commonly +6 (sulfate, e.g. in

oceanic waters), 0 (zero-valent sulfur (ZVS) e.g. in vol-

canic and geothermal areas), and �1/�2 (in sulfide

minerals such as pyrite (FeS2) in rocks or ore bodies).

In volcanic areas and geothermal areas, oxidation of ZVS
www.sciencedirect.com 
and other reduced sulfur compounds can generate

extremely low pH ecosystems (e.g. pH � 0.7 in Lake

Kawah Idjen, Indonesia [3] and pH � 0.2 in the Copahue

volcano — Lake Caviahue area, Argentina [4]). Geother-

mal sites, found typically where the Earth’s crust is

relatively thin, occur in New Zealand, Iceland, the

Azores, some Caribbean islands and elsewhere, with

Yellowstone National Park (Wyoming) being the most

well-known and documented area. Extensive cave sys-

tems formed where sulfide-rich waters interact with

oxygen at the water table or at subterranean springs also

give origin to sulfuric acid and the emergence of extreme

acidic environments [5]. A similar scenario of sulfur

cycling in sewage systems can cause the formation of

zones of extreme acidity in the upper (aerobic) regions

and severe corrosion and sometimes collapse of concrete

pipes (e.g. [6]).

Although natural extremely acidic environments associ-

ated with the dissolution of sulfide minerals exist, they are

relatively rare compared to those of anthropogenic origin

that have arisen from mining metals and coals, which can

be found in most (post)-industrialized countries [7�].
Again low pH derives mostly from elevated concentra-

tions of sulfuric acid, though the pH of mine-impacted

environments tends often to be marginally higher than

those associated with sulfur oxidation due to the buffering

influence of the ferrous/ferric couple (iron is generally the

dominant transition metal in these environments). For

example, the pH of the most famous sulfide mineral-

derived water body, the Rio Tinto river in south-west

Spain, is 2.3–2.7 throughout its entire 100 km length.

Exceptions to this general trend do occur however, such

as within the Richmond mine in Iron Mountain, Califor-

nia, where very warm temperatures cause extensive evap-

oration from the acidic iron-rich pools within it, resulting

in the formation of ‘acid-generating salts’ and highly

elevated concentrations of hydronium ions. Negative

pH values as low as �3.6 have been recorded within this

pyrite-rich mine [8].

Phylogenetic diversity of extremely
acidophilic prokaryotes, and key functional
features of acidophile communities
Acidophiles are distributed throughout all three Domains

within the tree of life [1]. Extremely acidophilic prokar-

yotes include Alpha-proteobacteria, Beta-proteobacteria

and Gamma-proteobacteria, as well as several species in
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the class Acidithiobacillia (Figure 1). Other Gram-nega-

tive acidophiles are found within the deeply-branching

bacterial phyla Nitrospirae (Leptospirillum spp.), Aquificae

and Verrucomicrobia. Gram-positive extreme acidophiles

currently fall within two phyla, Actinobacteria and Fir-

micutes, and include some of the most metabolically

versatile of all extremophilic prokaryotes. Within the

Domain Archaea, extreme acidophiles are found within

the Euryarchaeota (which includes Picrophilus spp., the

most acidophilic of all currently known life-forms) and

the Crenarchaeota (mostly thermo-acidophiles) phyla.

Extreme acidophiles can also be found in many branches

of the Eukarya, including the fungi, green and red algae

and diatoms, amoeba, flagellates and ciliates [9].

Extreme acidophiles are known to display a wide range of

physiological traits, both individually (traits/species) and

collectively (traits/microbiome). Some of these traits can

be found in many species and are atypical in terms of their

spread and abundance with respect to non-acidophilic

prokaryotic counterparts as summarized below. The abil-

ity to tolerate and thrive in extremely acidic liquors

defines them as a group, and the ability to (passively)

maintain pH gradients of several orders of magnitude

between themselves and the outer world (the internal pH

of most acidophiles is �6.5) is unique to these micro-

organisms. Diverse strategies, comprising both active

(proton exclusion, exchange, pumping, consumption

and neutralization) and passive (cytoplasmic buffering)

mechanisms of pH homeostasis as well as damage miti-

gation strategies (DNA repair, synthesis of acid stable

proteins) appear to underlie this general capacity [10,11].

However, the contributions of each of these strategies to

enhancing acid tolerance at the community level are

currently unknown.

In addition to having to cope with extreme acidity, and

sometimes with significant temperature variations, indig-

enous life-forms frequently also have to tolerate elevated

concentrations of various transition metals (e.g. copper)

and metalloids (e.g. arsenic), high osmotic potentials

deriving from the presence of large amounts of inorganic

solutes, and variable temperatures and oxidation–reduc-

tion potentials [1]. Known strategies to cope with these

many stresses entail responses by individual species, with

the exception of biofilm formation which is frequently

regarded as a collective response.

Commonly observed physiological traits of acidophiles

are summarized in Figure 2. These include chemolitho-

trophy (the ability to use inorganic electron donors ferrous

iron, hydrogen, ZVS and sulfur oxy-anions), ferric iron

respiration, autotrophy (both obligate and facultative),

diazotrophy, osmo-tolerance (though tolerance to NaCl

salt is more variable), enhanced abilities to tolerate ele-

vated concentrations of cationic transition metals, and

propensity for extracellular polymeric substance (EPS)
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production. Thermo-tolerance (in archaea) and psychro-

tolerance (some Gram-negative bacteria) is also charac-

teristic of some extreme acidophiles. Several of these

capacities (e.g. metal tolerance) are globally conserved

across acidophilic lineages while others partition differ-

entially between taxa (e.g. autotrophy–diazotrophy), and

as such these tend to be features that underlie structuring

of acidic microbiomes [12].

Acidic microbiomes: patterns of assembly and
occurrence
In both natural and anthropogenic extremely acidic envir-

onments, levels of species richness are significantly less

than those of non-extreme environments, making them

highly tractable microbiome model systems (e.g. [13]).

Understanding of the organizational principles of several

acidic microbiomes has increased as a result of numerous

cultivation-dependent and independent studies, and

more recently also from a plethora of targeted environ-

mental metagenomic studies (Table 1) ranging from

bioprospecting analyses (e.g. [14]) to perturbation-based

experiments (e.g. [15]). These studies have revealed that

regardless of the specific habitat type, relatively few

bacterial and archaeal species account for the vast bulk

of acidic microbiomes. Core assemblages made up of a

single dominant species or a couple of co-dominant

species generally constitute 50–80% of the community,

while a variable number (typically 3–10) of satellite

species tend to be present at less than 20%. Occurrence

and proportions of the different predominant acidophiles

varies with the community concerned [16–19,20��,21].
For example, snottites dripping from the ceiling of acidic

caves are either dominated by Acidithiobacillus thiooxidans
populations [17] or Leptospirillum ferrooxidans populations

[18] depending on the predominant energy source avail-

able (sulfide-rich springs vs pyrite-rich minerals). Other

interesting and consistent patterns emerging from the

increasingly available data, show the predominance of

Leptospirillum and Ferroplasma spp. in warmer (>30�)
extremely acidic (pH < 2) ferruginous mine waters

[13], and Ferrovum spp. and Acitithiobacillus ferrivorans
in cooler (<20 �C) less acidic (pH 2–3) water bodies of

similar chemical composition [22]. In addition to the core

microbiome members, a variety of low-abundance species

of both known (e.g. Acidimicrobium ferrooxidans [22]) and

novel (e.g. ARMAN nanoarchaea [23]) acidophiles

accompany the core-species and satellite-species in the

assemblages.

Despite increased knowledge of the microbial compo-

nents of acidic microbiomes, detailed distribution maps

for acidophiles are mostly unavailable, with the exception

of a few model microorganisms that have been the object

of biogeography-focused studies [24,25,26��,27]. In

recent years however, high resolution compositional

and functional profiling of microbial communities inha-

biting acidic environments have begun to reveal spatial
www.sciencedirect.com



Acidic microbiomes Quatrini and Johnson 141

Figure 1
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Phylogenetic tree of bacterial and archaeal acidophiles (type strains or reference strains) based on the 16S small subunit rRNA gene sequence.

The taxonomic groups, at class level, are colored as indicated at the right side of the figure. Black circles represent occurrence of a taxon in a

given sample while empty circles represent absence. Relative abundance of the different taxa in natural and anthropogenic acidic environments

from representative studies ([4,6,18,19,30,31]) are indicated by the size of the black circles. Tree construction details can be found in Ref. [1]. C:

candidate; UC: unclassified.
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Figure 2
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Key physiological traits of acidophilic communities. Electron donors (left), electron acceptors (right), inorganic (top) and organic (bottom) carbon

sources preferred by different acidophiles are depicted together with the general transformations driven by the community. Additional metabolic

features of extreme acidophiles are also indicated in the upper boxes.
diversity patterns at several different scales: global (e.g.

[25]), regional (e.g. [19,28�]), local (e.g. [29]), zonal (e.g.

[30]) and micro-scale (e.g. [17]). From these studies,

various physico-chemical factors driving the observed

ecological patterns have begun to be identified in a

number of acidic ecosystems (Figure 3) and entail, in

order of importance: temperature (differentiating

archaea-dominated from bacteria-dominated communi-

ties; e.g. [31]), pH (e.g. [32]), oxygen availability (e.g.

[33]) and redox potentials (dictated mostly by ratios of

ferric to ferrous iron concentrations, e.g. [34]). The effect

of other environmental factors, such as osmotic potentials,

in shaping the phylogenetic structure of acidic micro-

biomes has been much less researched. Similarly, tempo-

ral patterns in the taxonomic and metabolic diversity of

the majority of acidic habitats remain mostly unresolved,

though some studies have profiled seasonal shifts in

acidophile communities (both compositional and func-

tional; e.g. [35]) while others have tracked longer-term

temporal successions in geothermal springs (e.g. [36]),

acid salt lakes (e.g. [37]), mine waters (e.g. [38]), biomin-

ing sites (e.g. [39]) and built environments susceptible to

acidic corrosion (e.g. [40]). Additional efforts need to be

made to integrate spatial, temporal and physico-chemical

data in order to provide further understanding of the
Current Opinion in Microbiology 2018, 43:139–147 
patterns of occurrence and the rules of assembly of acidic

microbiomes.

Ecophysiological interaction networks
between acidophiles in natural and
anthropogenic ecosystems
Growing evidence from different well-studied ecosys-

tems indicates that the composition of the microbiomes

is less important than the topology of their functional and

ecological networks. Through diverse pathways for nutri-

ent uptake and exchange, energy flow and horizontal

transfer of genetic information, interacting partners in a

given community acquire new and distinctive emergent

properties, which in the case of acidic microbiomes, are

only beginning to be understood.

Extensive cataloguing of the metabolic potential of acid-

ophiles and their microbiomes has been achieved through

genomics and metagenomics, and functional inferences

derived from this data have been extensively covered in

the literature (reviewed in Ref. [41,42]). However, only in

relatively few acidic ecosystems has it been possible to

link the occurrence of a gene or gene pathway to cognate

transcripts, proteins and/or metabolites in order to ascer-

tain the inferred contributions of given community
www.sciencedirect.com
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Table 1

Recent meta-omics studies providing insights into the compositional and functional diversity of extreme acidophile communities and

their spatial and diversity patterns.

Pattern System Origin Sample type Meta-omics Other Refs.

Country Location TMG MG MT MP

Spatial Global Cave Italy; Mexico Marche region;

Tabasco

Biofilm, snotittes � + � � � [26��]

Regional AMD China Southeast region Water + � � � � [19,28�]
AMD China Guandong province Water � + + � � [48]

Local Tailings China Fankou Mine Mineral + � � � � [29]

Tailings China Shuimuchong Mineral + � � � � [34]

AMD Norway Svalbard Biofilm, sediment,

water

+ � � � � [14]

AMD USA Richmond Mine Biofilm � � � + � [16]

AMD USA Richmond Mine Biofilm � � + � � [44]

Zonal AMD Spain Los Rueldos Biofilm, streamers � + � � � [33]

AMD Sweden Kristineberg Mine Biofilm, streamers � + � � � [22]

Heap China ZiJinShan Mine Mineral, water + � � � � [30]

Heap China Dexing Mine Mineral, water � + [21]

Heap China Dexing Mine Mineral, water + � � � � [20��]
Acid Salt Lake Australia Yigarn Craton Water � + � � � [37]

Micro-scale Cave Italy Frasassi cave system Biofilm, snotittes � + � � � [18]

Mine adit Germany Drei Kronen und Ehrt Biofilm, snotittes � + � � � [17]

Temporal Seasonal AMD USA Richmond Mine Biofilms � � � � FISH [32]

AMD lake China Nanshan Mine Water + � � � � [62]

AMD Australia Mt Todd Mine; Rum

Jungle Mine

Water + � � � � [35]

Successional Mine adit; AMD Wales Dyffryn Adda Biofilm, streamers � � � � T-RFLP [38]

Geothermal

spring

China Yunnan, Tengchong Sediments, water + � � � � [36]

Geothermal

spring

New Zealand Inferno Crater Lake Water + � � � � [31]

Concrete USA Colorado Front

Range

Biofilm, slime + � � � � [40]

Abbreviations: TMG, targeted metagenomics; MG, metagenomics; MT, metatranscriptomics; MP, metaproteomics; T-RFLP, terminal restriction

enzyme fragment length polymorphism; FISH, fluorescence in situ hybridization.
members to ecosystem processes. The first and most

thoroughly system studied at this holistic level is the

Richmond mine at Iron Mountain, California, where

exhaustive genome (e.g. [43]), transcript (e.g. [44]), pro-

tein (e.g. [16]) and metabolite (e.g. [45]) data gathered

using diverse high-throughput technologies has been

used to build models of key cellular processes in acidic

econiches. Community-wide changes in the activity and

physiology of this [46��] and a few other mine water

communities [47,48] have been correlated to qualitative

and quantitative changes in emergent properties of the

acidic microbiomes (such as the development of biofilms)

or the local geochemistry. However, advanced molecular

understanding of acidic communities other than those in

mine waters is very limited, with studies mostly focusing

on single meta-omics analysis of selected communities

(e.g. [47]) or community members (e.g. [49]). This lacuna

still limit further generalizations to be derived transver-

sally on the shared and distinctive functionalities that

warrant survival, adaptation and specialization of the

microbiomes from diverse acidic habitats.

Despite this fact, a number of focused studies have been

instrumental in advancing knowledge of the interactions
www.sciencedirect.com 
between microorganisms in acidic communities and are

beginning to aid in deciphering the underlying organiza-

tional principles (rules of assembly) and integrated phys-

iological capacities (rules of function) of these communi-

ties. Acidophiles interact with each other in ways which

are as diverse as those reported for non-extremophiles.

Positive symbioses (where one or more partners derive

some benefit) include mutualistic interactions (where all

partners benefit), commensalism (or facilitation, where

only one partner benefits) and synergistic interactions

(where complimentary activities of participants are more

efficient than either operating alone). Negative symbioses

(antagonism) are where activities of one or both partners

sharing an environmental niche are impaired or suffer

more serious negative impact, and include competition,

amensalism (where one or more species repress others),

predation, parasitism and virus-induced cell lysis. Many

examples of microbial interactions listed above have been

described, in vivo and in vitro, in low pH environments

and defined laboratory cultures [50]. One that well illus-

trates interplay of carbon, iron and sulfur cycling and a

binary culture acting with far greater efficiency than

axenic cultures alone, is the case of Acidithiobacillus
thiooxidans and Ferrimicrobium acidiphilum growing in
Current Opinion in Microbiology 2018, 43:139–147
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Figure 3
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Advances and challenges in acidic microbiomes studies. High-throughput analyses (center) performed on extreme acidophiles and their

microbiomes are heavily biased towards genome- and metagenome-based studies. The general scarcity of functional data (metatranscriptomic,

metaproteomic and metabolomic) conditions further understanding of ecosystem processes in acidic environments other than acid mine

drainages. Recent meta-omics studies have uncovered spatial and temporal patterns of variation in acidic niches (right) and helped identify the

factors acting as principal drivers of such patterns. Ecological interactions (left) emerging from these and other studies (reviewed in Ref. [50]) are

beginning to reveal the underlying organizational principles and the integrated capacities of these communities.
‘inorganic’ (i.e. free of any added organic carbon com-

pounds) media with the mineral pyrite (FeS2) as sole

energy source [51]. At. thiooxidans is an autotroph that

oxidizes reduced sulfur but not iron, while Fm. acidiphi-
lum has opposite traits (a heterotroph that oxidizes iron

but not reduced sulfur). Together, but not alone, they can

unlock the energy available from oxidizing pyrite. Fm.
acidiphilum initiates the process by generating ferric iron,

which attacks the mineral and releases small amounts of

reduced sulfur which in turn is used as electron donor by

At. thiooxidans, fuelling its fixation of CO2 into organic

carbon, some of which is leaked and incorporated by Fm.
acidiphilum, facilitating its continued oxidation of iron and

dissolution of pyrite. Acidity produced from sulfur oxida-

tion (by At. thiooxidans) is of mutual benefit to both

acidophiles.

Negative interactions taking place in acidic environments

have been far less documented. Virus–host interactions

represent one notable exception. A rich diversity of

viruses infecting acidophilic archaea from both high (e.

g. Sulfolobus spp. and Acidianus spp.) and moderate tem-

perature environments (e.g. ARMAN nanoarchaea and

Ferroplasma spp.) have been described over the last

30 years [52]. Despite a general scarcity of known viruses

infecting bacterial acidophiles, support for their existence

has been obtained from genomics (e.g. [53]), metage-

nomics (e.g. [54]) and enrichment cultures (e.g. [55]). Also

CRISPRs (segments of DNA containing short repetitions
Current Opinion in Microbiology 2018, 43:139–147 
of base sequences) which are known to protect microbial

cells from invasion by microbial viruses and other foreign

mobile genetic elements have been found in genomic and

metagenomics datasets derived from acidic environments

(e.g. [56]), and to encode diversified virus-directed spacer

sequences (e.g. [57]) and prevent the establishment of

productive infections in certain acidophilic model micro-

organisms (e.g. [58�]). For instance, exposure of Sulfolobus
islandicus to Sulfolobus spindle-shaped virus SSV9 causes

virus-induced dormancy of the cells 24–48 hours post-

infection, with a severe impact on host physiology and

ecology [58�]. Potentially, viruses cause mortalities of

specific microorganisms within communities, perturbing

their taxonomic and functional organization and dynam-

ics. Such perturbations may even cause the crash of

biologically-driven mineral leaching operations [41].

However, understanding of viral impact on the biology

and ecology of acidophiles and acidic microbiomes is

currently very limited. Similarly, other antagonistic inter-

actions merit further attention.

Conclusions: outlook and applications
The biotechnological potential of acidophiles that medi-

ate redox transformation of iron and sulfur has been

exploited in commercial-scale mineral bio-processing

operations for over 50 years, with new opportunities for

developing ‘biomining’ technologies emerging more

recently [59]. Incorporating different species of acido-

philes in natural or synthetic (engineered) microbial
www.sciencedirect.com
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consortia, working in concerted action to perform com-

plex tasks more efficiently, is considered the path to

overcoming the limitations of bioleaching with single

strains [60]. Despite this fact, engineered consortia have

often turned out to be unstable (not robust), largely

because synthetic assemblies and naturally-occurring

consortia transferred to foreign environments can elimi-

nate the ecological and evolutionary context in which the

relevant interactions were forged and the inherent meta-

bolisms selected. This realization has highlighted the

need to better identify the ecophysiological principles

that lay behind a community’s assembly rules, and that

are critical for synthetic microbial consortia design and, in

particular, the design of microbial consortia that can be

used for bioleaching technologies which are almost exclu-

sively mediated by acidophilic prokaryotes.

‘Meta-omic’ studies of microbial communities that occur

in man-made and natural extremely acidic environments

are beginning to make this challenge approachable. How-

ever, except for a handful of studies that have actually

used available tools to assess the ecological and evolu-

tionary significance of observed variability patterns in

ecosystem functioning (reviewed in Ref. [46��]), most

community-genomic studies of these extreme systems

are so far approximate assessments of the types of organ-

isms present (phylum to genus level), the diversity of

metabolic pathways inferred (and only occasionally

linked to activity) and/or correlate to spatio-temporal

variations (reviewed in Ref. [61]).

The ecological interactions that govern microbiome com-

position (diversity) and dynamics (stability) in acidic

environments remain mostly unresolved. How interac-

tions vary across communities, both in terms of the

interacting partners and the nature and strength of the

dependencies among microorganisms, requires further

analyses. Genome-scale models of metabolism need to

be integrated with meta-omics data to elucidate the

underlying assembly rules. Such knowledge will offer

new opportunities to synthetically engineer relevant

interactions and harness acidic microbiomes in renewed

biotechnological applications.
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