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Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago,

Chile, 4 Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas,

Facultad de la Vida y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile, 5 Center for

Integrative Medicine and Innovative Science (CIMIS), Facultad de Medicina, Universidad Andres Bello,

Santiago, Chile, 6 Laboratorio de Neuroinmunologı́a, Fundación Ciencia & Vida, Santiago, Chile,

7 Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello,

Santiago, Chile, 8 The Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast,

Belfast, United Kingdom

* csaavedra@unab.cl

Abstract

Salmonella enterica Serovar Typhimurium (S. Typhimurium) is an intracellular bacterium

that overcomes host immune system barriers for successful infection. The bacterium colo-

nizes the proximal small intestine, penetrates the epithelial layer, and is engulfed by macro-

phages and neutrophils. Intracellularly, S. Typhimurium encounters highly toxic reactive

oxygen species including hydrogen peroxide and hypochlorous acid. The molecular mecha-

nisms of Salmonella resistance to intracellular oxidative stress is not completely understood.

The ArcAB two-component system is a global regulatory system that responds to oxygen. In

this work, we show that the ArcA response regulator participates in Salmonella adaptation

to changing oxygen levels and is also involved in promoting intracellular survival in macro-

phages and neutrophils, enabling S. Typhimurium to successfully establish a systemic

infection.

Introduction

Phagocytic cells play critical roles defending the host against pathogens. However, several

microorganisms, such as Salmonella enterica serovar Typhimurium (S. Typhimurium), can
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survive and multiply in phagocytic cells including monocytic macrophages and neutrophils

[1–3].

S. Typhimurium survives intracellularly in a membrane-bound compartment known as the

Salmonella-containing vacuole (SCV) [2, 4]. Salmonella residing inside macrophages can be

protected against more lethal neutrophils and inflammatory monocytes [5]. However, despite

infection of macrophages and neutrophils appear to be host vulnerable points because patho-

gens have the capacity to use them to their advantage, they also play a critical role in host pro-

tection [6–10]. Indeed, mice lacking neutrophils cannot control S. Typhimurium proliferation

[11].

Reactive oxygen species (ROS) are the primary microbicides within macrophages and neu-

trophils [8, 12], particularly under acidic conditions. Two molecules of superoxide (O2
-) react

non-enzymatically to generate hydrogen peroxide (H2O2) [13] reaching concentrations

between 1–4 μM to 2 mM in the phagosome [8,14]. Further, the slightly alkaline environment

in neutrophils triggers the expression and activation of myeloperoxidase [14,15], which cata-

lyzes the production of up to 73 mM hypochlorous acid (HOCl) from H2O2 and chloride [16].

Salmonella modulates gene expression in response to the intracellular lifestyle. Transcrip-

tome analyses of S. Typhimurium collected from infecting macrophages showed that the

expression of 919 of 4451 open reading frames becomes significantly altered, and 44% repre-

sented coding sequences of unknown function [6]. Similarly, 42% and 31% of Salmonella
genes were differentially expressed when infecting macrophages or epithelial cells, respectively

[17]. In particular, chlorine-based oxidative stress altered the expression of Salmonella genes

encoding proteins implicated in the iron-sulfur cluster assembly, cysteine biosynthesis, stress

response, biofilm formation and central metabolism [18].

The ROS response by S. Typhimurium and other enteric bacteria involves the transcription

factors SoxRS and OxyR [19–22]. SoxRS, HypT, NemR, and RclR are also specifically impli-

cated in the response to HOCl [23–26]. However, OxyR, which regulates the expression of

many genes encoding proteins required for ROS detoxification, does not completely protect S.

Typhimurium against the oxidative burst generated in phagocytic cells [27].

Several S. Typhimurium porins (OmpD, OmpW, OmpC, OmpS2, and OmpF) mediate

H2O2 and HOCl influx. Expression of these porins is also down-regulated in response to H2O2

and HOCl, and their inactivation increases Salmonella ROS resistance [28, 29]. Accordingly,

the absence of OmpD increases S. Typhimurium invasion and proliferation in RAW 264.7

macrophages, as well as proliferation and systemic dissemination in BALB/c mice [30]. We

have previously ruled out a role for SoxS and OxyR in the negative regulation of porin genes;

instead, the expression of several of these porins was regulated by ArcA [28, 29], a transcrip-

tion factor in the ArcAB two-component system. ArcAB, which comprises the ArcA response

regulator and the sensor histidine kinase ArcB, responds to oxygen [31–33]. ArcAB modulates

cellular metabolism, biosynthesis and motility of anaerobically and aerobically grown S. Typhi-

murium [34, 35]. It is also required for virulence inHaemophilus influenza, Vibrio cholerae,
Actinobacillus pleuropneumoniae, and S. Typhimurium [36–39].

When S. Typhimurium responds to H2O2 during aerobic growth, ArcA regulates gene

expression and contributes to control the levels of glutathione, NADH, and intracellular ROS,

as well as the pyruvate dehydrogenase complex and other processes, thus modulating the

redox potential of the cell [35]. In this study, we examined in more detail the function of

ArcAB two-component system in Salmonella pathogenesis, especially its role in S. Typhimur-

ium infectivity. Our results show that ArcA participates in the bacterial adaptation to changing

oxygen levels, and also promotes intracellular survival in macrophages and neutrophils, hence

contributing to systemic infection.

The ArcAB two component system and its role in Salmonella infection
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Materials and methods

Ethics statement

Animals were manipulated following the recommendations in the Guide for the Care and Use

of Laboratory Animals of the US National Institutes of Health, and the protocol was approved

by the Bioethics Committee of Universidad Andrés Bello, Protocols 001/2012 and 06/2016 in

the framework of FONDECYT Grants #1120384 and #1160315.

Bacterial strains and growth conditions

The S. Typhimurium 14028s parental strain, ΔarcA, ΔarcB, ΔarcA/pBR::arcA and ΔarcB/pBR::

arcB, complemented with plasmid pBR322 containing the promoter and coding regions for arcA
and arcB, were maintained on LB agar plates in aerobiosis unless otherwise indicated (Table 1).

Cell line cultures

RAW 264.7 (ATCC1 TIB-71™) murine macrophages and HEp-2 (ATCC1 CCL-223™) human

epithelial cells were cultivated in 25-cm2 tissue culture flasks (Becton Dickinson Labware) with

5 ml of the specific culture media for each cell type. The Roswell Park Memorial Institute

(RPMI) medium and Dulbecco’s Modified Eagle Medium (DMEM) were used for epithelial

cells and macrophages, respectively. Both cell types were passaged twice a week when they

reached 80% confluence. Culture media were supplemented with 10% fetal bovine serum

(FBS). Cells were incubated at 37˚C with 5% CO2.

Mice bone-marrow-derived neutrophil extraction and infection assays

C57BL/6 female mice (7 to 8 weeks old) were used to obtain bone-marrow-derived neutrophils

and for infection assays. Mice were kept in plastic cages in a temperature-controlled environ-

ment (22–24˚C). Bacteremia was assessed as described elsewhere [30], Briefly, three groups of

six female C57BL/6 mice (7 to 8 weeks old) were infected orally with 1×105 colony forming

units (CFUs). In parallel, the same number of mice was infected intraperitoneally with 1×103

CFUs of parental or mutant strains in 0.1 ml Phosphate Buffered Saline (PBS) (NaCl 137 mM,

KCl 2.7 mM, Na2HPO4 10 mM, and K2HPO4 1.4 mM, pH 7.4). A group of six females were

used as a noninfected control. The health of all mice was monitored daily. After day 3 (for oral

infection) or day 5 (for intraperitoneal infection), mice were euthanized by cervical disloca-

tion. Extracted livers and spleens from infected and noninfected controls were weighed and

homogenized with sterile PBS; the homogenates were serially diluted (10-fold increments) in

sterile PBS, and CFUs were determined by plating onto LB agar. To prepare mouse neutro-

phils, bone marrow was extracted as described [40], and bone-marrow-derived neutrophils

were obtained using the mouse Neutrophil Isolation Kit (Milenybiotec) according to the man-

ufacturer’s instructions. This resulted in the isolation of an average of 800.000 neutrophils/ml

with around 85% viability, which were also positive for CD11b and Ly6G, as determined by

Table 1. Bacterial strains used in this study.

Strain Characteristics Source

Stm 14028s Wild type strain of Salmonella enterica serovar Typhimurium 14028s ATCC G. Mora

ΔarcA Stm 14028s ΔarcA::aph [28]

ΔarcB S. Typhimurium ΔarcB::caf [29]

ΔslyA S. Typhimurium ΔslyA::aph [46]

https://doi.org/10.1371/journal.pone.0203497.t001
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flow cytometry. In addition, the viability of neutrophils was monitored throughout the experi-

ments with trypan blue staining.

Gentamicin protection assays

Cell infection assays were conducted using S. Typhimurium 14028s and its isogenic derivatives

ΔarcA and ΔarcB, as described [41] with minor modifications. Bacteria were grown under

microaerophilic conditions by adding an overlay of 500 μl of sterile mineral oil as a barrier to

oxygen. Prior to infection assays, bacteria were centrifuged (13,000 rpm, 5 min) and resus-

pended in 1 ml of cell culture medium (RPMI for HEp-2, neutrophils and DMEM for RAW

264.7) supplemented with 10% FBS; as a result, the concentration of bacteria used to infect was

5x108 bacteria/ml. For HEp-2 and RAW 264.7 adherent cells, the assays were performed on

96-well plates. 100 μl of the bacterial cell suspension was added to each well containing cell

monolayers (multiplicity of infection of 1:100). After 1 h incubation in 5% CO2 at 37˚C, tech-

nical triplicates of the infected cells were stained with trypan blue to determine cell viability.

Also, technical replicates for each strain were lysed with deoxycholate (0.5% w/v in PBS), seri-

ally diluted (10-fold) in PBS, and plated onto LB agar plates to obtain the CFU of each strain at

1 h postinfection (hpi). The remaining wells were washed twice with sterile PBS and incubated

in 5% CO2 at 37˚C for 2 h with 100 μl cell medium plus 250 μg ml-1 gentamicin to kill extracel-

lular bacteria. At 3 hpi, the medium was removed, and cells were washed twice with PBS and

lysed with sodium deoxycholate (0.5% w/v in PBS). The cell lysates were 10-fold serially diluted

in PBS and plated onto LB agar plates to obtained the CFU counts at 3 hpi. The same protocol

was used for infection of non-adherent murine neutrophils, except that the cells were kept in

1.5-ml Eppendorf tubes and in each washing step required 5-min centrifugations at 270 g.

Determination of ROS

ROS levels in infected cells were measured using 10 μM of the probe 2’,7’-dichlorodihydro-

fluorescein diacetate (H2DCFDA), as described [42]. The fluorescent probe was added just

prior to measuring, and fluorescence was determined at 1 and 3 hpi using a TECAN Infinite

200 PRO Nanoquant microplate reader (excitation 480 nm; emission 520 nm). Emission val-

ues were first blanked against the background fluorescence of non-infected cells and then nor-

malized to the optical density of bacteria grown as the OD600 of the co-culture was measured

at the same time as the fluorescence was read. Cells in dimethylsulfoxide (DMSO) were used

as a blank. Measurements were carried out every 5 min for 100 min. To calculate intracellular

ROS, PBS buffer, bacteria, and eukaryotic cells without treatment were used as blanks. The dif-

ference in fluorescence was calculated and divided by the elapsed time. This value was normal-

ized by the difference in growth during the respective times. To quantify H2O2, the Amplex1

Red Hydrogen Peroxide/Peroxidase Assay Kit (ThermoFisher) was used following manufac-

turer´s instructions. Additionally, HOCl was determined using GFP bleaching. For this, the

pGlo plasmid was introduced into each bacterial strain, remaining episomally and induced

overnight with arabinose 50 mM [43] and the loss of fluorescence, as an indirect measure of

increasing amounts of HOCl, was determined using a TECAN Infinite 200 PRO Nanoquant

microplate reader (excitation 395 nm; emission 509 nm).

Total RNA extraction from infected eukaryotic cells

Infected cells were recovered at 1 and 3 h, washed twice with PBS, and then lysed with sodium

deoxycholate (0.5% w/v in PBS). RNA extraction was performed by the acid-phenol method,

as described [44]; the pellet was suspended in 30 μl nuclease-free water, and stored at -80˚C

until used. The integrity of the RNA was determined by 1.0% agarose gel electrophoresis,

The ArcAB two component system and its role in Salmonella infection
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quantity was determined spectrophotometrically and quality was verified by OD260/280 ratio.

The RNA was treated with 2 U of DNase I (Roche) for 1 h to remove contaminant DNA. To

ensure no carry-over DNA in the samples, we routinely performed PCR using primers for bac-

terial 16s RNA and found no product using the RNA extract as template.

qRT-PCR

cDNA synthesis was performed at 37˚C for 1 h in 25 μl of a mixture containing 2.5 pmol of

Random Primers (Invitrogen), 10 μl template RNA (5 mg), 0.2 mM dNTPs, 1 μl sterile water,

4 μl of 5× buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl, 15 mM MgCl2, and 10 mM DTT),

and 200 U of reverse transcriptase (Invitrogen). Primers used for qRT-PCR are listed in S1

Table. The relative quantification of each transcript was performed using the Brilliant II SYBR

Green QPCR Master Reagent and the Mx3000P detection system (Stratagene). The qRT-PCR

mixture (20 μl) contained 1 μl of the cDNA template and 120 nM of each primer. The qRT-

PCR was performed under the following conditions: 10 min at 95˚C followed by 40 cycles of

30 s at 95˚C, 45 s at 58˚C, and 30 s at 72˚C. Primer pairs were selected with amplification effi-

ciencies of 3.3 ± 10%. Obtained values were used to calculate fold-change expression of target

genes, normalized by the expression of a suitable gene selected in these experimental condi-

tions [45]. We used talB gene expression for normalization, which is stable under the studied

conditions, based on whole transcriptomic analyses [46]. Validation of the talB gene expres-

sion to normalize transcriptomic experiments under oxidative stress is found in S1, S2 and S3

Figs. The selection was supported by comparing stability and expression of talB gene with

other commonly used housekeeping genes in our experimental conditions. Expression levels

were compared to those of each gene found in strain 14028s at 1 hpi.

Statistical analyses

Gene expression of each mutant strain was calculated relative to wild type. Gene-by-gene compar-

isons were performed as individual experiments for each time point using one-way ANOVAs

with α = 0.05. Statistical analyses were performed with the Bonferroni correction comparing

mutant strains with a wild type strain separately at 1 and 3 hpi using GraphPad 5.01 (Prism1).

Results

The ArcAB two-component system is required for bacterial survival in

epithelial cells, macrophages, and neutrophils

Bacteria associated with epithelial cells (HEp-2), macrophages (RAW 264.7), and bone-mar-

row-derived neutrophils were quantified at 1 and 3 hpi to evaluate the ability of ΔarcA and

ΔarcB mutants to adhere to cells and to establish an intracellular niche, respectively. Experi-

ments were also performed with the genetically complemented ΔarcA::aph/pBR::arcA and

ΔarcB::caf/pBR::arcB strains, which gave similar results to those obtained using the parental

strain 14028s.

Salmonella can promote its own entry into host cells by first adhering to the cell surface

using specialized fimbriae and adhesins [47, 48]. No difference in adhesion to any of the tested

host cells was observed between strains 14028s and ΔarcA (Fig 1A), an expected result since

ArcA does not regulate genes encoding fimbriae [35], and therefore, its absence should not

affect Salmonella adhesion. In contrast, loss of ArcB resulted in 2-fold more bacteria harvested

from HEp-2 cells, but not from phagocytic cells (Fig 1A). This suggested that absence of the

ArcB sensor histidine kinase altered the entry of Salmonella into epithelial cells, and this effect

was independent from the ArcA response regulator.

The ArcAB two component system and its role in Salmonella infection
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At 3 hpi, the number of intracellular bacteria recovered from infections with ΔarcA in the

various cell types was significantly lower compared to S. Typhimurium 14028s (Fig 1B), under-

scoring the importance of ArcA in establishing an intracellular bacterial niche, especially

Fig 1. Relative CFUs harvested from mutant vs. wild type S. Typhimurium strains. Strains from S. Typhimurium were

incubated at a MOI of 100 with HEp-2, RAW 264.7 and bone-marrow derived neutrophils. Intracellular bacteria were

harvested at 1 hpi (A) and 3 hpi (B) by lysing the cells with sodium deoxycholate. Values are the number of CFU from each

strain relative to the number of CFU from the parental strain. Data represent mean ± SD from 5 independent experiments.
�P< 0.05; ��P< 0.01, ���P< 0.001 by one-way ANOVA followed by Bonferroni post hoc test.

https://doi.org/10.1371/journal.pone.0203497.g001
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inside epithelial cells and neutrophils. Similarly, the ΔarcB mutant survived poorly in epithelial

cells and neutrophils (Fig 1B). As a control, we carried out the same experiment with a previ-

ous incubation of the eukaryotic cells with a phagocytosis inhibitor and found that this treat-

ment reduced drastically the number of recovered CFUs (S4 Fig).

The reduced intracellular survival of ΔarcA and ΔarcB mutants (Fig 1) could be due to

either increased bacterial susceptibility to intracellular microbicidal effects or a differential

induction of ROS upon infection. To distinguish between the two possibilities, we determined

the amount of ROS produced by infected cells at the same time points postinfection using

H2DCFDA. This is a fluorogenic probe that in the presence of ROS is converted to the highly

florescent compound 2’,7’-dichlorofluorescein (DCF). The probe detected similar amounts of

ROS over 3 hpi (Fig 2), which remained relatively constant irrespective of the infecting bacte-

rial strain in the assay. This suggested that both macrophages and neutrophils maintain their

total ROS levels throughout the first 3 h of infection irrespective of the presence or absence of

arcAB gene expression. Similar results were observed with the quantification of H2O2 produc-

tion in both cell types and HOCl production in neutrophils (S5 and S6 Figs, respectively).

Together, we conclude that an intact ArcAB two-component system contributes to intracellu-

lar survival of S. Typhimurium in phagocytes and epithelial cells, and the presence or absence

of the system does not influence the levels of ROS production induced in host cells.

ArcA and ArcB regulate detoxification-, membrane permeability-, and

toxic resistance-related genes inside macrophages and neutrophils

We evaluated the role of the ArcAB two-component system in modulating oxidative stress

resistance during intracellular bacterial survival [17]. RNA was extracted from bacteria after

infection (RAW 264.7 and bone-marrow-derived neutrophils) at 1 and 3 hpi. These times

Fig 2. Total reactive oxygen species production. S. Typhimurium strains were incubated at a MOI of 100 with each cell type and ROS were evaluated at 1 and 3 hpi.

The amount of ROS was determined by quantifying DCF fluorescence in neutrophils and macrophages co-cultured with the parental S. Typhimurium 14028s, and the

ΔarcA and ΔarcBmutants. Values indicate Arbitrary Fluoresce Units (AFU) normalized by the number of bacteria recovered. One-way ANOVA followed by Bonferroni

post hoc test.; no significant differences found at α = 0.05. Biological replicates n = 5, three technical replicates per experiment.

https://doi.org/10.1371/journal.pone.0203497.g002

The ArcAB two component system and its role in Salmonella infection

PLOS ONE | https://doi.org/10.1371/journal.pone.0203497 September 4, 2018 7 / 20

https://doi.org/10.1371/journal.pone.0203497.g002
https://doi.org/10.1371/journal.pone.0203497


were representative of two stages in the eukaryotic cell response, namely the oxidative burst

and SCV maturation, respectively [49–53].

It was previously demonstrated that ArcA and Hfq mediate the activation of the hilD pro-

moter, especially during early stationary phase and with vigorous aeration [54]. This can trig-

ger activation of SPI-1 resulting in the secretion of effector proteins required for Salmonella
uptake by cells [54]. We therefore examined the expression of hilA and sipC, as these genes are

important during the early steps of Salmonella intracellular survival. In neutrophils, ArcA was

required for induction of sipC expression (Fig 3). SipC is a protein whose function contributes

to the maintenance of the phagosome compartment [54]. Also, hilA expression was upregu-

lated by ArcA at 3 hpi under our experimental conditions (Fig 3). In early stationary phase in
vitro culture, mutations in arcA also reduced hilA expression 2-fold [54].

Other important factors required for Salmonella survival inside phagocytes are detoxifica-

tion enzymes including katG, katE, katN, ahpF, and ahpC, which become highly induced in

response to hydrogen peroxide [17]. Inside neutrophils, where the main ROS compound is

HOCl, the majority genes encoding catalases, alkyl hydroperoxidase, and superoxide dismut-

ase were up-regulated in the absence of arcA (Fig 4). In the context of biochemical reactions

occurring inside this particular phagosome, where superoxide and hydrogen peroxide are con-

sumed rapidly to produce HOCl in the presence of the myeloperoxidase enzyme, these prod-

ucts are arguably scarce and short-lived. Only katE was down-regulated in the absence of arcA
at 1 hpi (Fig 4). Because the KatE enzyme is expressed during exponential growth [55], it is

likely that this result reflects the reduced intracellular growth of arcA mutant bacteria.

Another bacterial protection mechanism against ROS involves the modulation of the com-

position of the outer membrane. Under H2O2 and HOCl stress in vitro, S. Typhimurium ArcA

downregulates genes encoding OmpC, OmpD, OmpF, and OmpW porins [28, 29]. Inside

neutrophils, however, bacteria through ArcA upregulate ompD, ompF, and ompW (Fig 5),

while in macrophages ArcA downregulates ompD and ompF and upregulates ompW (S7 Fig).

These results showing different expression patterns related to the presence or absence of arcA
and the type of phagocytic cell suggest that bacteria sense different environments and respond

accordingly in each cell type, this adaptation capacity allow Salmonella to survive the ROS-

related conditions that the bacteria encounters during infection.

Gene expression related to central metabolism in response to highly toxic HOCl was also

evaluated since these pathways are critical to maintain redox state and prevent oxidative dam-

age, and previous work reported that ArcA, in response to 1 mM H2O2, regulates key genes

required for carbon biosynthesis, energy, and maintenance of the redox state [35] as the main

bacterial response to these toxic conditions. We examined the expression of a selection of

genes encoding enzymes involved in central metabolism. These included:manZ (encoding a

subunit from the mannose transporter) and three genes encoding enzymes involved in glycol-

ysis, namely phosphoglucose isomerase (pgi), 2,3-bisphosphoglycerate-independent phospho-

glycerate mutase (pmgI), and fructose-bisphosphate aldolase (fbaB). Our results show that

genes related to glycolysis are not part of the ArcA regulon. In contrast,manZ is downregu-

lated by ArcA at 3 hpi (Fig 6). A similar finding was also reported in E. coli, where complex

posttranslational regulation of this transporter in response to low glucose and phosphate was

noted [56]. We also found a similar response in macrophages (S8 Fig).

arcA and arcB are required for successful systemic infection in C57BL/6

mice

To investigate the relevance of arcA and arcB during host infection, in vivo infection assays

were conducted in C57BL/6 mice with each single mutant. In comparison to strain 14028s,

The ArcAB two component system and its role in Salmonella infection
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both ΔarcA and ΔarcB showed reduced abilities to cause infection when administered orally or

intraperitoneally. Upon oral administration of 1×105 CFU, the recovery of CFUs correspond-

ing to the ΔarcA strain was reduced more than 90% in both the liver and spleen. Likewise,

ΔarcB diminished approximately 60–70% in both organs compared to the wild type strain (Fig

7). A similar result was observed after intraperitoneal infection with a 1×103-CFU inoculum.

Recovery of the ΔarcA strain was reduced 85% in the liver and 83% in the spleen. The same

Fig 3. Relative expression of SPI-1 genes sipC and hilA in S. Typhimurium ΔarcA and ΔarcB strains inside bone-marrow-

derived murine neutrophils. The effect of ΔarcA and ΔarcB on SPI-1 genes sipC and hilA was determined from bacteria

isolated from infected bone-marrow-derived murine neutrophils. �P< 0.05; ��P< 0.01; ���P< 0.001. One-way ANOVA with

the Bonferroni correction comparing mutant strains with a wild type strain separately at 1 and 3 h postinfection. Biological

replicates n = 5, three technical replicates per experiment.

https://doi.org/10.1371/journal.pone.0203497.g003
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phenomenon was observed when quantifying viable bacteria from the ΔarcB strain (Fig 7),

demonstrating that ArcA and ArcB are essential for S. Typhimurium systemic infection in

C57BL/6 mice separately, as seen in the CFU recovered from each singe mutant. As a control,

we used a ΔslyA strain, which is highly attenuated in mice infections [57, 58]. Inactivating SlyA

decreased the recovery of bacteria in a manner similar to that observed ΔarcA and ΔarcB
strains. These results, combined with the gene expression patterns observed for each single

mutant, underscore the importance of ArcA and ArcB for systemic infection.

Fig 4. Relative expressions of genes related to detoxification (sodA, sodB, katN, katG, katE, ahpC and ahpF) in S. Typhimurium ΔarcA and

ΔarcB strains inside bone-marrow-derived murine neutrophils. �P< 0.05; ��P< 0.01; ���P< 0.001. One-way ANOVA with the Bonferroni

correction comparing mutant strains with a wild type strain separately at 1 and 3 h postinfection. Biological replicates n = 5, three technical

replicates per experiment.

https://doi.org/10.1371/journal.pone.0203497.g004
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Discussion

ArcA regulates Salmonella cellular metabolism, flagella biosynthesis, and motility under many

in vitro conditions, including anaerobiosis, aerobiosis, and the presence of H2O2 [34, 35]. Loss

Fig 5. Relative expression of porin genes (ompC, ompD, ompF and ompW) in S. Typhimurium ΔarcA and ΔarcB strains inside bone-

marrow-derived murine neutrophils. ΔarcA and ΔarcB strains inside bone-marrow-derived murine neutrophils. �P< 0 05; ��P< 0 01;
���P< 0 001. One-way ANOVA with the Bonferroni correction comparing mutant strains with a wild type strain separately at 1 and 3 h

postinfection. Biological replicates n = 5, three technical replicates per experiment.

https://doi.org/10.1371/journal.pone.0203497.g005
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of arcA also reduces expression of SPI-1 genes invF and hilA in liquid cultures [54]. However,

the involvement of ArcA in Salmonella intracellular survival remains unclear. In this study, we

investigated the involvement of ArcA in cell invasion and survival in epithelial cells, macro-

phages, and neutrophils in physiological conditions similar to those found in the host. Our

Fig 6. Relative expression of metabolic genes (manZ, pgi, pmgI and fbaB) in S. Typhimurium ΔarcA and ΔarcB strains inside bone-marrow-

derived murine neutrophils. ΔarcA and ΔarcB strains inside bone-marrow-derived murine neutrophils. �P< 0.05; ��P< 0.01; ���P< 0.001. One-way

ANOVA with the Bonferroni correction comparing mutant strains with a wild type strain separately at 1 and 3 hours postinfection. Biological

replicates n = 5, three technical replicates per experiment.

https://doi.org/10.1371/journal.pone.0203497.g006
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results revealed that ArcA plays a role in intracellular bacterial survival, as demonstrated by

the significant reduction in the number of viable ΔarcA bacteria recovered from each cell type

at 3 hpi. The reduced numbers of bacteria were related to their reduced capacity to replicate

within cells and not to defects in their ability for invasion/phagocytosis. Significant differences

were not observed in the overall production of ROS by infected macrophages and neutrophils,

irrespective of the genetic background of the infecting bacterial strain. This observation sug-

gests that the cues triggering ROS production are independent of the ArcAB regulon. How-

ever, the bacteria were in an oxidative environment when survival was measured, which was

consistent with the peak in ROS production by macrophages and neutrophils upon infection

[59–61].

We found that at the transcriptional level, ArcA modulates adaptive bacterial responses to

stress conditions inside phagocytes. In neutrophils, which display a harsher environment than

macrophages, ArcA was implicated in promoting the expression of genes associated with the

SPI-1 T3SS such as hilA and sipC, both of which are associated with invasion, as well as forma-

tion and maintenance of the SCV [54, 62]. Additionally, inside neutrophils, only some of the

typical genes that encode detoxifying enzymes were induced, as previously described for mac-

rophages [17]. Of these enzymes, only katE seems to be relevant in the conditions encountered

inside neutrophils during the time range evaluated.

The expression of porin genes was also modulated by ArcA in response to several factors

found in the context of infection. For instance, OmpC and OmpF also respond to osmolarity

and in this case are regulated by EnvZ and OmpR [63]; also permeability varies with glucose

Fig 7. Recovery of Salmonella in C57BL/6 mice. (A) Mice orally infected with 1×105 bacteria/100 μl S. Typhimurium 14028s. (B) Mice intraperitoneally infected with

1×103 bacteria/100 μl S. Typhimurium 14028s. ΔarcA and ΔarcB strains were grown until OD600 = 0.2 in microaerophilic conditions. One-way ANOVA with the

Bonferroni correction. �P< 0.05; ��P< 0.01, ���P< 0.001. Biological replicates n = 5, five technical replicates per experiment.

https://doi.org/10.1371/journal.pone.0203497.g007
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levels, including OmpW [64, 65], while OmpD is modulated by oxygen levels and changing

pH values [66]. Additionally, the glycolytic pathway was independent of the ArcA regulon,

although it seems to be required for intracellular replication of S. Typhimurium in macro-

phages [67]. Only the endpoint of the pathway was induced by ArcA in this case, which could

be also related to the interconnection between glycolysis and the pentose phosphate pathway.

In the systemic infection model, significantly reduced numbers of viable bacteria were

found in spleen and liver, suggesting ArcAB play an important role in the in vivo infection

ability of S. Typhimurium. This observation agrees with our results from ex vivo cell infections

and also with our transcriptional analyses. These results differ from the previous report by

Evans et al. where no differences in virulence were found for arcA and wild type S. Typhimur-

ium [34]. These could be due to methodological variations in the infection assays. In the report

by Evans et al., a lower bacterial inoculum (250 CFU per mice) was used and the mice

remained alive for several days. In contrast, a higher bacterial dose, as we have used, would

cause a more robust level of inflammation by the wild type bacteria leading to rapid killing of

the infected mice, while the arcA and arcB mutants are clearly attenuated. We believe our

experimental conditions model the infective dose for Salmonella under natural infections,

which is high (104−108) in comparison to other pathogens [68]. Intestinal invasion of S. Typhi-

murium depends on the bacterial dose and a linear proportion between the inocula (104−1010)

and invasion has been shown [69]. These observations were also replicated in the wax moth

larvae infection model [70].

Evans et al. also reported no differences in virulence between arcA mutant and parental

strains using a competitive index (CI) assay that included high bacterial doses [34], results we

also confirmed in our study (S9 Fig). The absence of an effect of arcA and arcB mutants in

competition assays at low bacterial doses can be explained by the dose effect discussed above.

Under higher doses, we believe the parental strain in the mixed infection can elicit a robust

inflammatory response, which would preclude seeing differences with the mutants. Together,

we conclude that the ArcAB regulon, due to its modulatory role in central metabolism, fine

tunes the expression of several stress-associated pathways having a more noticeable role under

conditions of higher bacterial cell density.

The expression analysis of selected genes shows that the ArcAB system may work in a non-

cognate manner, since there is a different gene expression pattern in each single mutant strain

(Figs 4, 5 and 6). This has been previously observed by others under different experimental

conditions [71–75], and also noticed in our global transcriptomic analyses in the presence of

H2O2 and HOCl (in preparation). It is possible that ArcAB may be noncanonically activated

under certain metabolic conditions. For example, intracellular infection could increase the

pool of acetyl phosphates, which would activate ArcA independently of ArcB phosphorylation.

Global transcriptomic analyses under multiple stress conditions including intracellular infec-

tion may offer clues to understand this behavior of the ArcAB system.

Supporting information

S1 Fig. Variation of 16S under oxidative stress. Kegg Pathway illustration of data obtained in

whole transcriptome analyses of the parental strain S. Typhimurium 14028s. Data extracted

from RNA-seq analyses of each strain under 1.56 mM of H2O2 and 1.0075 mM of NaOCl sepa-

rately. Green boxes indicate repression; red boxes indicate induction of the particular gene.

The expression of the 16S gene increases in the presence of H2O2 (A) and decreases in the

presence of NaOCl (B). The raw data is deposited in the NCBI SRA database under accession

numbers SRR5192881 and SRR5192882 (Bioproject PRJNA357075) [46].

(TIF)
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S2 Fig. Stability of tested housekeeping genes. The abundance of transcripts of 16S, talB,

gyrB, rpoB, ftsZ, secA, gmk, and glnA under hydrogen peroxide (H2O2) and sodium hypochlo-

rite (NaOCl), as FPKM (Fragments per kilo base per million [mapped reads]) values, was used

to calculated fold change expression between the conditions: under 1.56 mM of H2O2 (grey

bar), under 1.0075 mM of NaOCl (yellow bar) and Control (blue bar). FPKM represents the

normalized abundance of transcripts values in a particular condition.

(TIF)

S3 Fig. Expression of target genes calculated as relative to different housekeeping genes.

Comparison between the expression patterns of some of our work target genes (manZ, pmgI,
ompD, ompW, sodA, and sipC) in control, H2O2 and NaOCl conditions, normalized with some

of the housekeeping genes proposed by Rocha et al., 2015 and talB. Ratios were calculated

using the FPKM values for all genes in each condition as a measure of expression. Fold change

expression of the genes are shown under Control (blue bar), 1.56 mM of H2O2 (orange bar)

and 1.0075 mM of NaOCl (grey bar) conditions.

(TIF)

S4 Fig. CFUs recovered from eukaryotic cells treated with 5 μM cytochalasin D. Strains

from S. Typhimurium were incubated at a MOI of 100 with (A) macrophages and (B) bone-

marrow derived neutrophils and CFU was recovered as indicated in Materials and Methods in

gentamicin protection assays. Values represent Colony Forming Units (CFU) recovered of

each strain infecting the phagocytes and expressed as the Ratio of CFU recovered from phago-

cytes (macrophages and neutrophils) treated vs un treated with cytochalasin D. S. Typhimur-

ium 14028s harvested from cells untreated phagocytes (black bar), S. Typhimurium 14028s

harvested from treated phagocytes (white bar), S. Typhimurium ΔarcA harvested from

untreated phagocytes (dark blue bar), S. Typhimurium ΔarcA harvested from treated phago-

cytes (light blue bar), S. Typhimurium ΔarcB from untreated phagocytes (dark grey bar), and

S. Typhimurium ΔarcB from treated phagocytes (light grey bar) at 3 hpi. �P< 0.05; ��P< 0.01,
���P< 0.001 by one-way ANOVA followed by Bonferroni post hoc test.

(TIF)

S5 Fig. H2O2 production in Raw 264.7 and bone-marrow-derived murine neutrophils.

Phagocytic cells were co-cultured with S. Typhimurium 14028s (white bar), S. Typhimurium

ΔarcA (grey bar) and S. Typhimurium ΔarcB (black bar) at 1 hpi, and S. Typhimurium 14028s

(blue bar), S. Typhimurium ΔarcA (red bar), and S. Typhimurium ΔarcB (purple bar) at 3 hpi.

Quantified using Amplex1 Red Hydrogen Peroxide/Peroxidase Assay Kit. One-way ANOVA

followed by Bonferroni post hoc test., no significate difference found. Data are from 5 biologi-

cal replicates with 3 technical replicates per experiment.

(TIF)

S6 Fig. HOCl production in bone-marrow-derived murine neutrophils. Each phagocyte

was co-cultured with S. Typhimurium 14028s/pGLO (white bar), S. Typhimurium ΔarcA/
pGLO (grey bar), and S. Typhimurium ΔarcB/pGLO (black bar). The amount of HOCl was

quantified by GFP bleaching after cell lysate. �P< 0.05; ��P< 0.01, ���P< 0.001 by one-way

ANOVA followed by Bonferroni post hoc test. Biological replicates n = 5, 3 technical replicates

in each one. Data are from 5 biological replicates with 3 technical replicates per experiment.

(TIF)

S7 Fig. Relative expression of genes in the S. Typhimurium 14028s, ΔarcA, and ΔarcB
strains inside RAW 264.7 cells. �p<0,05; ��p<0,01; ���p<0,001. One Way ANOVA with

Bonferroni post-test comparing mutant strains vs wild type strain in 1 hpi and 3 hpi separately.
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Data are from 5 biological replicates with 3 technical replicates per experiment.

(TIF)

S8 Fig. Relative expression of genes in the S. Typhimurium 14028s, ΔarcA, and ΔarcB
strains inside RAW 264.7 cells. �p<0,05; ��p<0,01; ���p<0,001. One Way ANOVA with

Bonferroni post-test comparing mutant strains vs wild type strain in 1 hpi and 3 hpi separately.

Data are from 5 biological replicates with 3 technical replicates per experiment.

(TIF)

S9 Fig. Competitive infection assays. Competitive infections were performed as described

before by Evans et al., 2011 [34]. Animals where infected orally (p.o.) of i.p with a 1:1 mixture

of S. Typhimurium 14028 and the arcA mutant. Mice were sacrificed at 4 or 6 days p.i and

liver and spleen were collected for processing. CI index was calculated as described [34].

(TIF)

S1 Table. Primers used for qPCR.

(PDF)

Acknowledgments

This work was supported by FONDECYT Grants #1120384 and #1160315 (to CPS), Grant

PFB-16 (to RP) from "Comisión Nacional de Investigación Cientı́fica y Tecnológica de Chile"

(CONICYT) and UNAB Nucleo Grant DI-3-17/N (to CPS). CPE, ACB, and JCS received doc-

toral fellowships from CONICYT. We thank Dr. Michael McClelland for prior collaborations

that allowed us to reach this point on this research topic and Dr. Linda J. Kenney for her com-

ments on the manuscript.

Author Contributions

Conceptualization: Claudia A. Riedel, Rodrigo Pacheco, Miguel A. Valvano, Claudia P.

Saavedra.
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Methodology: Coral Pardo-Esté, Alejandro A. Hidalgo, Camila Aguirre, Alan C. Briones,

Carolina E. Cabezas, Juan Castro-Severyn, Juan A. Fuentes, Cecilia M. Opazo, Carolina

Otero, Rodrigo Pacheco, Claudia P. Saavedra.

Project administration: Rodrigo Pacheco, Claudia P. Saavedra.

Resources: Carolina Otero, Rodrigo Pacheco, Claudia P. Saavedra.

Supervision: Alejandro A. Hidalgo, Rodrigo Pacheco, Miguel A. Valvano, Claudia P.

Saavedra.

Validation: Coral Pardo-Esté, Claudia P. Saavedra.
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transcription factor SlyA from Salmonella Typhimurium regulates genes in response to hydrogen perox-

ide and sodium hypochlorite. Research in Microbiology. 2018; 1–16.

47. Krogfelt KA. Bacterial adhesion: Genetics, biogenesis, and role in pathogenesis of fimbrial adhesins of

Escherichia coli. Clin Infect Dis. 1991; 13: 721–735. https://doi.org/10.1093/clinids/13.4.721

48. Wagner C, Hensel M. Adhesive mechanisms of Salmonella enterica. Adv Exp Med Biol. 2011; 715:

17–34. https://doi.org/10.1007/978-94-007-0940-9_2 PMID: 21557055

49. Mills SD, Finlay BB. Isolation and characterization of Salmonella typhimurium and Yersinia pseudotu-

berculosis-containing phagosomes from infected mouse macrophages: Y. pseudotuberculosis traffics

to terminal lysosomes where they are degraded. Eur J Cell Biol. 1998; 77: 35–47. https://doi.org/10.

1016/S0171-9335(98)80100-3 PMID: 9808287

50. Goldman R. Control of lipoprotein lipase secretion by macrophages: effect of macrophage differentia-

tion agents. J Leukoc Biol; 1990. 86: 79–86.

51. Eriksson S, Bjorkman J, Borg S, Syk A, Pettersson S, Andersson DI, et al. Salmonella typhimurium

mutants that downregulate phagocyte nitric oxide production. Cell Microbiol. 2000; 2: 239–250. https://

doi.org/10.1046/j.1462-5822.2000.00051.x PMID: 11207580

52. Vazquez-Torres A, Jones-Carson J, Mastroeni P, Ischiropoulos H, Fang FC. Antimicrobial actions of

the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I.

Effects on microbial killing by activated peritoneal macrophages in vitro. J Exp Med. 2000; 192: 227–

36. https://doi.org/10.1084/jem.192.2.227 PMID: 10899909

53. Garcia-Del Portillo F. Salmonella intracellular proliferation: where, when and how? Microbes Infect.

2001; 3: 1305–1311. https://doi.org/10.1016/S1286-4579(01)01491-5 PMID: 11755419

54. Lim S, Yoon H, Kim M, Han A, Choi J, Choi J, et al. Hfq and ArcA are involved in the stationary phase-

dependent activation of Salmonella pathogenicity island 1 (spi1) under shaking culture conditions. J

Microbiol Biotechnol. 2013; 23: 1664–1672. https://doi.org/10.4014/jmb.1305.05022 PMID: 24018968

55. Finn GJ, Condon S. Regulation of catalase synthesis in Salmonella typhimurium. J Bacteriol. 1975;

123: 570–579. PMID: 238955

56. Rice JB, Vanderpool CK. The small RNA SgrS controls sugar–phosphate accumulation by regulating

multiple PTS genes. Nucleic Acids Res. 2011; 39: 3806–3819. https://doi.org/10.1093/nar/gkq1219

PMID: 21245045

57. Libby SJ, Goebel W, Ludwig A, Buchmeier N, Bowe F, Fang FC, et al. A cytolysin encoded by Salmo-

nella is required for survival within macrophages. Proc Natl Acad Sci USA. 1994; 91: 489–493. PMID:

8290552

58. Buchmeier N, Bossie S, Chen CY, Fang FC, Guiney DG, Libby SJ. SlyA, a transcriptional regulator of

Salmonella typhimurium, is required for resistance to oxidative stress and is expressed in the intracellu-

lar environment of macrophages. Infect Immun. 1997; 65: 3725–3730. PMID: 9284144

59. Winterbourn CC, Kettle AJ. Redox reactions and microbial killing in the neutrophil phagosome. Antioxid

Redox Signal. 2013; 18: 642–660. https://doi.org/10.1089/ars.2012.4827 PMID: 22881869

60. Burton NA, Schurmann N, Casse O, Steeb AK, Claudi B, Zankl J, et al. Disparate impact of oxidative

host defenses determines the fate of Salmonella during systemic infection in mice. Cell Host Microbe.

2014; 15: 72–83. https://doi.org/10.1016/j.chom.2013.12.006 PMID: 24439899

The ArcAB two component system and its role in Salmonella infection

PLOS ONE | https://doi.org/10.1371/journal.pone.0203497 September 4, 2018 19 / 20

https://doi.org/10.3791/50586
https://doi.org/10.3791/50586
http://www.ncbi.nlm.nih.gov/pubmed/23892876
https://doi.org/10.1099/00221287-143-8-2665
http://www.ncbi.nlm.nih.gov/pubmed/9274020
https://doi.org/10.1074/jbc.M304351200
http://www.ncbi.nlm.nih.gov/pubmed/12783863
https://doi.org/10.4049/jimmunol.0804110
http://www.ncbi.nlm.nih.gov/pubmed/19620311
https://doi.org/10.1007/BF00333404
https://doi.org/10.1007/BF00333404
http://www.ncbi.nlm.nih.gov/pubmed/3065612
https://doi.org/10.1093/nar/29.9.e45
https://doi.org/10.1093/clinids/13.4.721
https://doi.org/10.1007/978-94-007-0940-9_2
http://www.ncbi.nlm.nih.gov/pubmed/21557055
https://doi.org/10.1016/S0171-9335(98)80100-3
https://doi.org/10.1016/S0171-9335(98)80100-3
http://www.ncbi.nlm.nih.gov/pubmed/9808287
https://doi.org/10.1046/j.1462-5822.2000.00051.x
https://doi.org/10.1046/j.1462-5822.2000.00051.x
http://www.ncbi.nlm.nih.gov/pubmed/11207580
https://doi.org/10.1084/jem.192.2.227
http://www.ncbi.nlm.nih.gov/pubmed/10899909
https://doi.org/10.1016/S1286-4579(01)01491-5
http://www.ncbi.nlm.nih.gov/pubmed/11755419
https://doi.org/10.4014/jmb.1305.05022
http://www.ncbi.nlm.nih.gov/pubmed/24018968
http://www.ncbi.nlm.nih.gov/pubmed/238955
https://doi.org/10.1093/nar/gkq1219
http://www.ncbi.nlm.nih.gov/pubmed/21245045
http://www.ncbi.nlm.nih.gov/pubmed/8290552
http://www.ncbi.nlm.nih.gov/pubmed/9284144
https://doi.org/10.1089/ars.2012.4827
http://www.ncbi.nlm.nih.gov/pubmed/22881869
https://doi.org/10.1016/j.chom.2013.12.006
http://www.ncbi.nlm.nih.gov/pubmed/24439899
https://doi.org/10.1371/journal.pone.0203497


61. Jayaprakash K, Demirel I, Khalaf H, Bengtsson T. The role of phagocytosis, oxidative burst and neutro-

phil extracellular traps in the interaction between neutrophils and the periodontal pathogen Porphyromo-

nas gingivalis. Mol Oral Microbiol. 2015; 30: 361–375. https://doi.org/10.1111/omi.12099 PMID:

25869817

62. Zhou D, Mooseker MS, Galan JE. Role of the S. typhimurium actin-binding protein SipA in bacterial

internalization. Science. 1999; 283: 2092–2095. PMID: 10092234

63. Nara F, Matsuyama SI, Mitzumo T, Mizushima S. Molecular analysis of mutant ompR genes exhibiting

different phenotypes as to osmoregulation of the ompF and ompC genes of Escherichia coli. Mol Gen

Genet. 1986; 202: 194–199. PMID: 3010044

64. Liu X, Ferenci T. Regulation of porin-mediated outer membrane permeability by nutrient limitation in

Escherichia coli. J Bacteriol. 1998; 180: 3917–3922. PMID: 9683489

65. Nandi B, Nandy RK, Sarkar A, Ghose AC. Structural features, properties and regulation of the outer-

membrane protein W (OmpW) of Vibrio cholerae. Microbiology. 2005; 151: 2975–2986. https://doi.org/

10.1099/mic.0.27995-0 PMID: 16151208

66. Santiviago CA, Toro CS, Hidalgo AA, Youderian P, Mora GC. Global regulation of the Salmonella enter-

ica serovar Typhimurium major porin, OmpD. J Bacteriol. 2003; 185: 5901–5905. https://doi.org/10.

1128/JB.185.19.5901-5905.2003 PMID: 13129964

67. Bowden SD, Rowley G, Hinton JC, Thompson A. Glucose and glycolysis are required for the successful

infection of macrophages and mice by Salmonella enterica serovar Typhimurium. Infect Immun. 2009;

77: 3117–3126. https://doi.org/10.1128/IAI.00093-09 PMID: 19380470

68. Kothary M. H., & Babu U. S. Infective dose of foodborne pathogens in volunteers: a review. J of food

safety. 2001; 21(1), 49–68.

69. Olsen J. E., Hoegh-Andersen K. H., Rosenkrantz J. T., Schroll C., Casadesús J., Aabo S., & Christen-
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