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Abstract

Acidithiobacillus albertensis is an extremely acidophilic, mesophilic, obligatory autotrophic sulfur-oxidizer, with
potential importance in the bioleaching of sulfidic metal ores, first described in the 1980s. Here we present the
draft genome sequence of Acidithiobacillus albertensis DSM 14366T, thereby both filling a long-standing gap in the
genomics of the acidithiobacilli, and providing further insight into the understanding of the biology of the non
iron-oxidizing members of the Acidithiobacillus genus. The assembled genome is 3,1 Mb, and contains 47 tRNAs,
tmRNA gene and 2 rRNA operons, along with 3149 protein-coding predicted genes. The Whole Genome Shotgun
project was deposited in DDBJ/EMBL/GenBank under the accession MOAD00000000.
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Introduction
The genus Acidithiobacillus [1] comprises a group of ob-
ligatory acidophilic chemolithotrophic bacteria that de-
rive energy from the oxidation of reduced sulfur
compounds, thereby contributing to the bioleaching of
ores and to the formation of polluting mine drainage
waters. Although they were considered until relatively
recently as members of the Gamma-proteobacteria,
multi-protein phylogenetic analysis of concatenated ribo-
somal proteins re-categorized the order Acidithiobacillales
as a new class of proteobacteria, now known as Acidithio-
bacillia [2]. Currently, seven species are recognized:
Acidithiobacillus thiooxidans [3], A. ferrooxidans [4], A.
albertensis [5], A. caldus [6], A. ferrivorans [7], A. ferridur-
ans [8], A. ferriphilus [9], four of which also catalyze the
dissimilatory oxidation of ferrous iron while three (A.
thiooxidans, A. albertensis and A. caldus) do not.
Being capable of biogenic acid production and oxida-

tion of reduced sulfur compounds, most species of the
taxon have been exploited industrially in the recovery of

valuable metals such as copper and gold and other rele-
vant elements from ores and wastes ([10] and references
therein). Not only are they frequent members of most
analyzed bioleaching consortia, but tend also to be
numerically relevant ([11] and references therein). Due
to their biotechnological relevance most species of the
taxon have been the object of intensive research since
the early 1900’s [12]. Yet, despite compelling evidence
regarding the widespread occurrence of A. albertensis
[13–16] and its potential for chalcopyrite and sphalerite
bioleaching [13, 17], A. albertensis remains the least
studied species of all acidithiobacilli.
Whole genome sequences of a number of representa-

tive strains of four species of Acidithiobacillus (A.
thiooxidans, A. ferrooxidans, A. caldus and A. ferrivor-
ans) have been reported to date [18] and genome
comparisons have been performed both between and
within species [19–23]. However, no representative
genome sequence is yet available for A. albertensis.
Given that A. albertensis resembles A. thiooxidans in
several aspects of their biology and physiology [5, 24],
and that presence of either species in the natural and in-
dustrial environments tend to be confounded due to the
high similarity between species at the 16S rRNA level
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[25], further characterization of the former is required to
shed light into the species-specific processes. Availability
of the whole-genome of the type strain of A. albertensis
represents a first necessary step in this direction.
Here we present a description of the first draft of the

genome sequence and annotation of the type strain of A.
albertensis (DSM 14366T) along with relevant genomic
indices of the taxon. The data presented fill a long-
standing gap in the understanding of the genomic land-
scape of the acidithiobacilli and of the biology of A.
albertensis and paves the way for more encompassing
phylogenomic analyses of the species complex of these
fascinating model acidophiles.

Organism information
Classification and features
Originally described by Bryant and colleagues [5], A.
albertensis (formerly Thiobacillus albertis) was recognized
as a new species in 1988 [26]. The species epithet derives
from the Latin (al.ber.ten’sis. M.L. adj. albertensis Alber-
tan), meaning pertaining to Alberta, a province of
Canada, from where it was first isolated. The type
strain is DSM 14366/ATCC 35403. A. albertensis was
described as a mesophilic, obligatory autotrophic
sulfur-oxidizer that did not oxidize iron. Differentiat-
ing characteristics from other members of the acid-
ithiobacilli include forming yellowish colonies on solid
sulfur-containing media, a slightly larger cellular size,
a tuft of polar flagella, a glycocalyx and a number of
large intracellular sulfur globules [5, 17]. A. alberten-
sis was reported to have a more confined pH range
for growth (2–4.5) and a slightly higher temperature
growth optimum with respect to other members of
the genus [1], although these features may vary
between strains [17]. Additional properties of A.
albertensis are listed in Table 1.
Phylogenetic analysis of the 16S rRNA gene se-

quence of A. albertensis DSM 14366T places the type
strain close to a few other cultivated members of the
species and several uncultured clones deposited in
GenBank, all of which are 100% identical at the16S
rRNA gene level (Fig. 1). The A. albertensis type
strain and its closest relatives branch apart from A.
thiooxidansT.

Genome sequencing information
Genome project history
The organism was selected for sequencing on the
basis of its phylogenetic position and 16S rRNA simi-
larity to members of the genus Acidithiobacillus. This
represents the first draft genome sequence of an A.
albertensis strain. The Whole Genome Shotgun
project has been deposited at GenBank under the
accession MOAD00000000. The version described in

this paper consists of 1 scaffold (2.7 > X Mbp) and
140 smaller contigs and is the first version,
MOAD01000000. Table 2 presents the project infor-
mation and its association with MIGS (version 2.0)
compliance [27].

Growth conditions and genomic DNA preparation
A. albertensis strain DSM 14366T was obtained from the
DSMZ collection and grown in DSMZ 71 medium at
30 °C. DNA isolation and routine manipulations were
carried out following standard protocols [28].

Table 1 Classification and general features of A. albertensis
strainT [22]

MIGS ID Property Term Evidence
codea

Classification Domain Bacteria TAS [1]

Phylum Proteobacteria TAS [1]

Class Acidithiobacillia TAS [2]

Order Acidithiobacillales TAS [47, 48]

Family
Acidithiobacillaceae

TAS [47, 49]

Genus Acidithiobacillus TAS [1]

Species Acidithiobacillus
albertensis

TAS [5, 26]

(Type) strain: StrainT

(DSM 14366)

Gram stain Negative TAS [5]

Cell shape Rod TAS [5]

Motility Motile TAS [5]

Sporulation Not reported NAS

Temperature range 10–40 °C TAS [5]

Optimum
temperature

25–30 °C TAS [5]

pH range; Optimum 2.0–4.5; 3.5–4.0 TAS [5]

Carbon source CO2 TAS [5]

MIGS-6 Habitat Acidic mineral-sulfur
rich environments

TAS [5]

MIGS-6.3 Salinity Not reported NAS

MIGS-22 Oxygen requirement Aerobic TAS [5]

MIGS-15 Biotic relationship Free-living NAS

MIGS-14 Pathogenicity Non-pathogen NAS

MIGS-4 Geographic location Canada/Alberta TAS [5]

MIGS-5 Sample collection 1983 TAS [5]

MIGS-4.1 Latitude Not reported NAS

MIGS-4.2 Longitude Not reported NAS

MIGS-4.4 Altitude Not reported NAS
aEvidence codes – IDA Inferred from Direct Assay, TAS: Traceable Author
Statement (i.e., a direct report exists in the literature), NAS Non-traceable Author
Statement (i.e., not directly observed for the living, isolated sample, but based on
a generally accepted property for the species, or anecdotal evidence). These
evidence codes are from the Gene Ontology project [50]
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Genome sequencing and assembly
The genome of A. albertensis DSM 14366T was se-
quenced using Illumina sequencing technology (MiSeq
platform) and paired-end libraries. Duplicate high
quality libraries with insert sizes of ~460 bp were

prepared using Nextera™ DNA Sample Preparation kit
(Nextera, USA). Raw sequencing reads were prepro-
cessed using Trimmomatic v0.32 [29]. Only reads
with a quality score > Q30 (corresponding to less than
1 error per 1000 bp) and a read length > 35 nt were
retained. High quality reads were assembled de novo
using Velvet (v1.2.10) [30] and a k-mer length of 151,
with an N50 of 39,225. Contig segments with at least
37 fold coverage were further scaffolded. The final
draft assembly contained 1 scaffold (2.7 > X Mbp) and
140 smaller contigs. The total size of the draft
genome is ~3.1 Mbp and the final assembly is based
on 3.1 Gbp of Illumina data.

Genome annotations
Genes were identified using Glimmer 3.02 [31] as part of
the RAST annotation pipeline [32]. The tRNA and
tmRNA predictions were made using ARAGORN
v1.2.36 [33] and the rRNA prediction was carried out via
HMMER3 [34]. Additional gene prediction analysis and
manual functional annotation curation was performed
using in house resources. The predicted CDSs were used
to search the National Center for Biotechnology Infor-
mation non-redundant database, UniProt, TIGRFam,

Fig. 1 Phylogenetic tree based on 16S rDNA sequence information position of A. albertensis strain DSM 14366T (type strain = T) relative to other
type and non-type strains within the acidithiobacilli. The strains and their corresponding GenBank accession numbers for 16S rRNA genes are: A.
albertensis DSM 14366T, NR_028982; A. albertensis BY0501, FJ032185; A. albertensis BY0503, FJ032186; A. albertensis BY0505, FJ032187; A. albertensis
BY0506, GQ254658; A. albertensis JYC, FJ172635; A. thiooxidans ATCC 19377T, Y11596; A. thiooxidans BAD2, KC902821; A. thiooxidans G8, KC902819;
A. thiooxidans NBRC13701, AY830902, AMD uncultured clone c7, JX989232; A. ferrooxidans ATCC 23270T, NR_074193; A. ferrivorans NO-37, NR_114620;
A. ferridurans ATCC 33020 T, NR_117036; A. caldus ATCC 51756 T, CP005986. The tree was inferred using the Neighbor-Joining method [51]. The optimal
tree with the sum of branch length = 0.08720008 is shown. The percentage of replicate trees in which the associated taxa clustered together in the
bootstrap test (1000 replicates) are shown next to the branches. The tree is drawn to scale, with branch lengths in the same units as those of the
evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Maximum Composite Likelihood
method [52] and are in the units of the number of base substitutions per site. The analysis involved 34nucleotide sequences. There were a total of
1314 positions in the final dataset. Evolutionary analyses were conducted in MEGA6 [53]

Table 2 Project information

MIGS ID Property Term

MIGS 31 Finishing quality Draft

MIGS-28 Libraries used Nextera 2.1

MIGS 29 Sequencing platforms Illumina MiSeq

MIGS 31.2 Fold coverage 64 x

MIGS 30 Assemblers Velvet v 1.2.10

MIGS 32 Gene calling method Glimmer 3.02

Locus Tag BLW97

Genbank ID MOAD00000000

GenBank Date of Release FEB 15, 2017

GOLD ID Gp0225628

BIOPROJECT PRJNA351776

MIGS 13 Source Material Identifier DSM 14366

Project relevance Biomining, Tree of life
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Pfam, PRIAM, KEGG, COG and InterPro databases.
Protein coding genes were analyzed for signalpeptides
using SignalP v4.1 [35] and transmembrane helices using
TMHMM v2.0 [36]. The circular map was drawn with
CGView [37]. Single nucleotide polymorphisms were
called using SNAP v2.1.1 [www.hiv.lanl.gov/content/se-
quence/SNAP/SNAP.html]. Non-synonymous substitu-
tion rates were calculated as the proportion between the
number of observed synonymous substitutions in pair-
wise gene alignments and the size of the each alignment,
and are expressed in percent.
Genome comparisons were performed using the

GET_HOMOLOGUES software package (version
07112016). Orthology was determined based on all-ver-
sus-all Best Bidirectional BlastP Hit and COGtriangles
v2.1 as clustering algorithm. Pairwise alignment cut-
offs were set at 75% coverage and E-value of 10E-5.
The phylogenomic relationships between the A. alber-
tensisT and other Acidithiobacillus strains were in-
ferred from the average nucleotide identity (ANI)
values assessed by BLASTn [38] and the in silico

DNA-DNA hybridization indexes (DDH) assessed
using the Genome-to-Genome Distance Calculator
with recommended formula 2 [39]. Species cutoff
limits were those defined by Meier-Kolthoff and col-
leagues [40].

Genome properties
The 3.5 Mbp draft genome of A. albertensisT is currently
arranged into one high quality scaffold (Fig. 2) and 140
smaller contigs, most of which correspond to fragments
of plasmids and other mobile genetic elements. Accord-
ing to the criteria of conservation of universal house-
keeping genes [41], the genome is predicted to be 99.9%
complete. Its average G + C content is 52.5% (Table 3).
From a total of 3202 predicted genes, 3149 were
protein-coding genes and 53 were RNA genes. A total of
63.4% of the CDSs were assigned a putative function
while the remainders were annotated as hypotheticals. A
total of 53 RNA genes partitioned into 47 tRNAs, 1
tmRNA and 2 rRNA operons (Table 3). The presence of
two rRNA operons has recently been experimentally

Fig. 2 Circular representation of the high quality draft genome of A. albertensisT displaying relevant genome features. The features are the following
(from outside to inside): Genes on forward strand (red); Genes on reverse strand (red); CDSs (blue), GC content (black); GC skew (green and purple)
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validated [25]. According to the genomic sequence
information, the two operons are 100% identical. The
distribution of genes into COGs functional categories is
presented in Table 4.

Insights from the genome sequence
Metabolic reconstruction analysis revealed a complete
suite of genes for sulfur oxidation, including those
encoding the SOX complex (soxYZB-AX and soxYZA-B,
soxH), tetrathionate hydrolase (tetH, doxD) and hetero-
disulfide reductase (hdrBC and hdrABC) previously
found in A. thiooxidansT and A. caldusT [42, 43].
Multiple copies of cytochrome d (cydAB) and
cytochrome o (cyoACBD) terminal oxidases found in
professional sulfur-oxidizing acidithiobacilli [19], also
occur in A. albertensisT. Genes for carbon dioxide
fixation are well conserved, but no genes for nitrogen
fixation were detected in the draft genome. Instead,
genes for nitrate/nitrite assimilation and urea hydrolysis,
both resulting in the production of ammonia, were
found in the genome of the A. albertensisT, along with a
number of ammonia transporters.
Gene clusters for the biosynthesis and assembly of

flagella, which is a differential morphologic trait between
this species and A. thiooxidans, are conserved with
respect to those encoded in the latter, in both general
architecture and gene content. The pairwise identity be-
tween the predicted protein products of the flagellar
genes of both type strains ranges from 87 to 100%,
suggesting as well, the common ancestry of the operons.

Yet, a relevant number of SNPs (single nucleotide
polymorphisms) producing non-synonymous amino
acidic substitutions of presently unclear relevance were
uncovered in nine genes of the A. albertensisT flagellar
cluster (Fig. 3), namely: flaB2, flhF, flhG, fliH, fliK, fliR,
fliS2, fleS and fleQ1. All these genes are well conserved
between A. thiooxidans strains (Fig. 3). The gene
variants identified in A. albertensis were validated by
read recruitment on a one-to-one basis, and are sup-
ported by more than 75 fold average (deep) coverage.
These genes encode the flagellins FlaB2, the hook-length
control protein FliK, the biosynthesis proteins FlhF, FliR
and FliS, the biosynthesis regulator FlhG, also known as
FleN, the assembly protein FliH, the sensor histidine
kinase FleS and the regulator FleQ. Among these
proteins, FlhF and FlhG/FleN encode proteins that have

Table 3 Genome statistics

Attribute Value % of Totala

Genome size (bp) 3,497,418 100.00

DNA coding (bp) 2,930,787 83.80

DNA G + C (bp) 1,836,144 52.50

DNA scaffolds 141 100.00

Total genesb 3202 100.00

Protein coding genes 3149 98.34

RNA genesc 53 1.66

Pseudo genes n.d n.d

Genes in internal clusters n.d n.d

Genes with function prediction 1967 61.43

Genes assigned to COGs 2322 72.52

Genes with Pfam domains 2152 67,21

Genes with signalpeptides 374 11.68

Genes with transmembrane helices 727 22.70

CRISPR repeats 0 0
aThe total is based on either the size of the genome in base pairs or the total
number of genes in theannotated genome
bIncludes tRNA, tmRNA, rRNA
cIncludes 23S, 16S and 5S rRNA

Table 4 Number of genes associated with general COG
functional categories

Code Value %age Description

J 135 4.22 Translation

A 1 0.03 RNA processing and modification

K 124 3.87 Transcription

L 181 5.65 Replication, recombination and repair

B 1 0.03 Chromatin structure and dynamics

D 29 0.91 Cell cycle control, mitosis and meiosis

Y 0 0.00 Nuclear structure

V 52 1.62 Defense mechanisms

T 127 3.97 Signal transduction mechanisms

M 203 6.34 Cell wall/membrane biogenesis

N 66 2.06 Cell motility

Z 0 0.00 Cytoskeleton

W 0 0.00 Extracellular structures

U 102 3.19 Intracellular trafficking and secretion

O 104 3.25 Posttranslational modification, protein
turnover, chaperones

C 169 5.28 Energy production and conversion

G 113 3.53 Carbohydrate transport and metabolism

E 156 4.87 Amino acid transport and metabolism

F 53 1.66 Nucleotide transport and metabolism

H 102 3.19 Coenzyme transport and metabolism

I 57 1.78 Lipid transport and metabolism

P 109 3.40 Inorganic ion transport and metabolism

Q 37 1.16 Secondary metabolites biosynthesis,
transport and catabolism

R 222 6.93 General function prediction only

S 179 5.60 Function unknown

– 880 27,48 Not in COGs

The total is based on the total number of predicted protein coding genes in
the annotated genome
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been shown to be relevant in the control flagellation
patterns in other model bacteria [44], suggesting that
differences in flagellation between A. albertensis (lopho-
trichous) and A. thiooxidans (monotrichous) shown in
Fig. 3 might be partially attributed to divergence in these
genes (6–14%). For the rest of the flagellar genes the rate
of SNPs conductive to amino acidic substitutions be-
tween A. albertensis and other A. thiooxidans sequenced
strains is low (<3) and similar to the rate observed in
well conserved housekeeping genes. Further studies
should be pursued to clarify the relevance of the uncov-
ered substitutions in the flagellation patterns of the
acidithiobacilli. Also, a larger number of chemotaxis
genes were predicted in the A. albertensisT genome sequence
with respect to those in A. thiooxidans. This latter set of
genes is organized in a cluster that includes mcp1-cheYSA-
mcp2-cheWRDB, and encodes proteins participating in
sensory adaptation to changing environmental signals rather
than flagellar motor control [45].
Differences between the A. albertensisT genome and

the pangenome of 10 other sequenced A. thiooxidans
(recently reported by [22]) can be attributed to little over
1000 genes (1066 genes). Nearly half of these genes per-
tain to at least 10 integrated mobile genetic elements
and a presently unclear number of plasmids, represent-
ing up to 16.2% of the A. albertensisT genome. In these

genomic segments 54.5% of the genes are hypotheticals
but a number of relevant functions were also detected,
including among others: a) four orthologs of the sulfur
oxygenase reductases (sor1–4), b) the gene cluster
encoding the assimilatory nitrate and nitrite reductases,
c) the urea carboxylase/allophanate hydrolase and the
urea ABC transporter encoding genes, d) the spermi-
dine/putrescine ABC transporter potABC and e) the
three-gene operon associated with rubrerythrin, recently
described by Cárdenas et al. [46]. All of these functions
could confer adaptive advantages to A. albertensisT over
A. thiooxidans strains under nitrogen and oxygen limita-
tion and/or under extremely low pH.
Differences in gene dosage have also been observed

between the two mesophilic sulfur-oxidizing/non iron-
oxidizing species based on the comparison of the two type
strains. A. albertensisT has more copies or gene variants (2
to more than 30) of the following: a) transposases and inac-
tivated derivatives, b) thiol:disulfide interchange protein
DsbG precursor, c) methyl-accepting chemotaxis receptor
proteins, d) Crp/Fnr, LysR and MerR family transcriptional
regulators, e) cytochrome d ubiquinol oxidases and e) SOR
sulfur oxygenase reductases. The latter occur in four copies
in the A. albertensisT genome, being completely absent in
A. thiooxidansT. Also more than 30 predicted protein prod-
ucts with GGDEF/EAL domains, likely involved in

Fig. 3 Flagellation patterns in A. albertensisT and A. thioxidansT. a Transmission electron micrograph showing a dividing A. albertensis DSM 14366T

cell with tuft of polar flagella and b a cell of A. thiooxidans ATCC 19377T with a single polar flagellum. c Comparison of the flagellar gene cluster
between A. albertensisT (AAL) and A. thiooxidansT (ATH) derived from the corresponding genomic sequences. Flagellar genes and gene clusters
are indicated accordingly. Percentage of amino-acid similarity is indicated only when bellow 98%. Color coding is as follows: motor proteins
(blue), basal-body (turquoise), hook (green), flagellin (light blue), biosynthesis and assembly functions (orange), regulation (red). d Heatmap of the
non-synonymous amino acidic substitution rates (percent) of the protein products of each flagellar gene and seven housekeeping genes from A.
albertensisT and 11 A. thioxidansT sequenced strains (AFOH01, LGYM01, JMEB01, AZMO01, LWSA01, LWRZ01, LWSB01, LWRY01, LWSC01, LWSD01,
LZYI01). Housekeeping genes were chosen after Nuñez et al. [25]
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nucleotide driven signaling pathways, control and modulate
gene expression and/or activity in A. albertensisT, 40% of
which seem to be exclusive to this species. Significant quan-
titative and qualitative differences in gene content have
been reported before between strains of A. thiooxidans ob-
tained from industrial processes [21, 22].
Despite the above mentioned differences between the

type strains of A. albertensis and A. thiooxidans, the
average nucleotide identity value assessed by BLASTn
(97,4%) and the in silico DNA-DNA hybridization index
assessed by GGDC (82.9%) are bellow the currently
recognized species cutoff limits [39], implying that A.
albertensis and A. thiooxidans probably comprise a
single genospecies.

Conclusions
Altogether, the evidence presented herein suggests that
validity of A. albertensis as an independent species
should be reconsidered. In this respect, genomic
approaches are crucial for understanding evolutionary
processes and the origins of microbial biodiversity. The
availability of the first high quality draft genome se-
quence of an A. albertensis strain will certainly enable
more comprehensive comparative genomic studies and
contribute to the resolution of the taxonomy and
phylogeny of the genus. From a genomic standpoint,
further analyses should be performed to assess if existing
differences between the two type strains extend to other
strains of each ‘presumed species’.
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